I agree with the responses given but would like to add one more characterisation, that even suggests a path forward.
Instead of thinking of them as different things, the same process can be both an interaction and a measurement dependong on which observer that describes it. And to investigate the disagreement between any two observers, requires a third observer. This way new interactions can be created, as you increase the complexity of the third observer (corresponds to energy scaling), they new inferactions are "explained" as observer-observer disagreements that are found to form new observer equivalence classes as you lower the observational energy scale.
The problem is that this picture does not fully mate with quantum mechanics as it stands, as the notion of "observers" in QM, refers to classical measurement devices, and by assumption there is not observer-observer disagreements in the classical realm, except those relating to the equivalence of inertial and accelrating classical observers, which is partly solved.
So the remaining problem is, what happens when the "observer" is so light, that it no longer can be reasonably considered as a "classical device"? This is from my perspective where we hit the same problems that we face in unification and QG. One also faces a compication of the running energy scale as you scale the observer. This is deeply related to the problem with mixing quantum theory with cosmological theories as well. In effects it proposes a fundamental feedback loop between UV and IR where UV divergences probably shouldt ever happen once the calculation is done the right way. There is a lot of really interesting stuff going on here that i think relates to the measurement problem, and even thinks like possible dependence on dark energy on the observational scale.
/Fredrik