The normalizer of the normalizer of a p-sylow supgroup

  • Thread starter Thread starter Niall101
  • Start date Start date
Niall101
Messages
20
Reaction score
0
Im trying to prove N(N(P)) = N(P)

So N(P) = set oh h where h^-1Ph = p

Then N(N(P)) = k where k^-1hk = h

the fact that p is a p sylow subgroup gives me what information? I am unsure.

Thanks in advance!
 
Physics news on Phys.org
Well I guess if you can prove that one is a subset of the other, and both of them have the same cardinality, then they are equal.

Do you see how you can prove this?
 
Not really sorry. Both are subgroups of G yes?

If I let H = the normalizer of P
Can I say P is normal in H and that as all sylow subgroups are conjugate H contains no other sylow subgroups then if N(N(P)) moves P somewhere else then there would be 2 P sylow subgroups in H?

Note: Havent been told that P is normal in HThanks very much for you reply
 
Last edited:
If P is the only subgroup of H, then P is normal in H
 
Thanks! So I can do it this way then with that result.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top