The origin of cold dark matter halo density profiles

AI Thread Summary
N-body simulations reveal that cold dark matter (CDM) halo formation occurs in two phases: a rapid accretion phase dominated by major mergers and a slower phase of mass addition to the outer halo. This two-phase process results in CDM halos exhibiting NFW profiles, with an inner density profile proportional to r^-1 and an outer profile proportional to r^-3. The concentration of a halo is influenced by the mass accreted during the rapid phase, aligning with findings from cosmological simulations. The model provides insights into the universality of dark matter halo profiles and suggests that violent relaxation plays a minimal role in their structure. Ongoing research continues to support the ΛCDM paradigm, while questions remain regarding the properties and detection of CDM.
Garth
Science Advisor
Gold Member
Messages
3,580
Reaction score
107
http://www.arxiv.org/abs/astro-ph/0508624

N-body simulations predict that CDM halo-assembly occurs in two phases: 1) a rapid accretion phase dominated by major mergers with a rapidly deepening potential well; and 2) a slow accretion phase characterised by a gentle addition of mass to the outer halo with little change in the inner potential well. We demonstrate, using one-dimensional simulations, that this two-phase accretion leads to CDM halos of the NFW form and provides physical insight into the properties of the mass accretion history that influence the final profile. During the fast accretion phase fluctuations in the gravitational potential effectively isotropise the velocities of CDM particles and we show that this leads to an inner profile $\rho(r)\propto r^{-1}$. Slow accretion onto an established potential well leads to an outer profile with $\rho(r)\propto r^{-3}$. The concentration of a halo is determined by the fraction of mass that is accreted during the fast accretion phase. Using an ensemble of realistic mass accretion histories, we show that the model predictions of the dependence of halo concentration on halo formation time, and hence the dependence of halo concentration on halo mass, and the distribution of halo concentrations all match those found in cosmological N-body simulations. Using a simple analytic model that captures much of the important physics we show that the inner $r^{-1}$ profile of CDM halos is a natural result of hierarchical mass assembly with a initial phase of rapid accretion. Our results also suggest that violent relaxation plays a minor role in structuring CDM halos.
This paper offers a fairly natural explanation for the universality of dark matter halo profiles.

In this model the mass accretion history has two distict phases, first a fast phase dominated by frequent mergers of smaller condensations of CDM, followed by a slow phase where mass slowly accretes onto the outer boundary of an existing central object. This model with only 2 phases accurately reproduces the properties of the CDM halo population, which, if correct, would imply that this is the key to explaining the universal nature of such haloes.

The continued effort modelling the large and smaller scale structure in the universe bears fruit and leads to confidence in the LCDM paradigm.

However where is the CDM? If and when it is discovered in the laboratory what properties will it have? Will these as-yet-undiscovered properties match the requirement of non-interacting CDM models such as the one here? We will have to wait and see.

Garth
 
Last edited:
Astronomy news on Phys.org
Yeah, this paper is consistent with a lot of the ideas I've seen thrown around at conferences. By no means am I willing to blindly accept these ideas (this process is extremely difficult to model in the accretion phase), but it's nice to see that there is progress. By the way, your link is to the wrong abstract:

http://www.arxiv.org/abs/astro-ph/0508624
 
TL;DR Summary: In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect alien signals, it will further expand the radius of the so-called silence (or rather, radio silence) of the Universe. Is there any sense in this or is blissful ignorance better? In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect...
Thread 'Could gamma-ray bursts have an intragalactic origin?'
This is indirectly evidenced by a map of the distribution of gamma-ray bursts in the night sky, made in the form of an elongated globe. And also the weakening of gamma radiation by the disk and the center of the Milky Way, which leads to anisotropy in the possibilities of observing gamma-ray bursts. My line of reasoning is as follows: 1. Gamma radiation should be absorbed to some extent by dust and other components of the interstellar medium. As a result, with an extragalactic origin, fewer...
Back
Top