The scale of the action integral?

  • Thread starter Thread starter pellman
  • Start date Start date
  • Tags Tags
    Integral Scale
AI Thread Summary
The Euler-Lagrange equation's homogeneity indicates that the equations of motion for a system are unaffected by the scale of the Lagrangian, allowing for multiplication by any constant without altering the outcome. However, questions arise regarding the absolute meaning of the scale of the Lagrangian or action integral, particularly when combining actions from different fields. The correct formulation of the total action may involve an arbitrary constant k, leading to discussions on whether determining k is purely empirical or influenced by theoretical frameworks. In quantum electrodynamics (QED), fundamental constants set the scales, while in effective theories, these constants can sometimes be derived from a deeper microscopic theory. Overall, the relative scales of the actions are crucial, as they dictate the behavior of the system.
pellman
Messages
683
Reaction score
6
Since the Euler-Lagrange equation is homogeneous, the equation of motion of a system of particles or a field is independent of the scale of the Lagrangian. That is, we can multiply the Lagrangian by any constant and arrive at the same equation of motion.

But does the scale of Lagrangian or the action integral ever have any absolute meaning?

Suppose we have two fields A and B with respective free field action integrals S_A and S_B. The action for the full system would be of the form S_A + S_B + S_interaction. But how do I know this is correct? Since kS_B, where k is a constant, is an equivalent free-field action for field B, the correct full action might be S_A + kS_B + S_interaction.

Is the determination of k a purely empirical question? Or are there theoretical considerations which could narrow the possible values of k?
 
Physics news on Phys.org
I think that you already answered to your first question (i.e. does the scale of the Lagrangian have any absolute meaning) in you next paragraph. That is, the scale indeed plays a role if we have a situation where the total action is sum of two or more actions. But even in that case, what matters is the relative scale of the actions since we can always scale the total action with an arbitrary constant.

To your second question, I think it depends on the system you are considering. For example in QED the scales are set by fundamental constants such as the unit charge, which cannot (at least to current knowledge) be derived from elsewhere. On the other hand, there are effective theories (especially in condensed matter physics) where the constants in the action can sometimes be derived using an underlying microscopic theory.
 
Thanks, Echows.
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top