The singular points on f = x^2 y - x y on a plane

naturemath
Messages
31
Reaction score
0
Let f(x,y) = x^2 y - xy = x(x-1)y be a polynomial in k[x,y].

I am looking for the singular subset of this function.

Taking the partials, we obtain

f_x = 2xy - y

f_y = x^2 - x.

In order to find the singular subset, both partials (with respect to x and with respect to y) must vanish. So we obtain that

f_x = 2xy - y = 0

which implies x = 1/2 or y = 0,

while

f_y = x^2 - x = 0

implies

x = 0 or x =1.

Drawing a picture of f, it is clear that the two points (0,0) and (1,0) are singular points, but what does x = 1/2 tell us? Is this point supposed to be a singular point as well?
 
Last edited:
Mathematics news on Phys.org
naturemath said:
f_y = x^2 - x = 0
:
what does x = 1/2 tell us? Is this point supposed to be a singular point as well?
No. f_y is never zero at x = 1/2.
 
Applying this method generates the POSSIBLE singular points. You should check if they really are singular points by other means.
 
Thank you haruspex and Millennial. That clarifies things!
 
A some what better method would be to look at f_x= 2xy- y= (2x- 1)y= 0 and say, as you do, that either x= 1/2 or y= 0.

Now look at f_y= x^2- x= x(x- 1)= 0 and use the values you already have. IF x= 1/2, that is impossible but IF y= 0, x can be 0 or 1. The singular points are (0, 0) and (1, 0).
 
Ah, that's a good argument. Thanks HallsofIvy!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top