The Speed of a Bullet Fired into a Ballistic Spring System

  • Thread starter Thread starter 1831
  • Start date Start date
  • Tags Tags
    Spring System
1831
Messages
13
Reaction score
0
[SOLVED] Spring System

1. Homework Statement

You have been asked to design a "ballistic spring system" to measure the speed of bullets. A spring whose spring constant is k is suspended from the ceiling. A block of mass M hangs from the spring. A bullet of mass m is fired vertically upward into the bottom of the block. The spring's maximum compression d is measured.

Find an expression for the bullet's speed.
Express your answer in terms of the variables m, M, k, d, and constant g.


2. Homework Equations

Ki + Ug + Usp = Kf + Ug + Usp

3. The Attempt at a Solution

I used conservation of momentum to find the final velocity of the bullet+block

(m+M)vf=mvi + Mvi

so...

vf=(m/m+M)*vB

where vB is the initial speed of the bullet.

Next, I used:
Ki + Ug + Usp = Kf + Ug + Usp

(1/2)mvi^2 + (1/2)kd^2 + Mgd = (1/2)mvf^2 + (1/2)kd^2 + Mgd
0 + (1/2)kd^2 + 0 = (1/2)(m+M)[(m+M)^2*vB^2] + 0 + Mgd

I found the answer to be:

((kd^2 - Mgd)(m+M))/m^2 = Vb

but this was not correct...please help me.
 
Physics news on Phys.org
Nevermind, I got it right...finally
 


wait can you show how you did this because I have the same problem thanks!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top