Theory question about Exact Eqtns and Calculus

  • Thread starter Thread starter flyingpig
  • Start date Start date
  • Tags Tags
    Calculus Theory
flyingpig
Messages
2,574
Reaction score
1

Homework Statement



I've noticed that exact equations take the same form as vector field dot <dx,dy> form, are there any relationships? Because I ended up writing an arrow on top of my F(x,y) everytime I do these exact equation problems

Is there a secret my book is not telling me?
 
Physics news on Phys.org
not sure if i understand the question, but if you have a differential
dQ = A(x,y)dx + B(x,y)dy

and they satisfy
\frac{A(x,y)}{dy} = \frac{B(x,y)}{dx}

then there exists a scalar function Q(x,y), such that dQ
dQ = A(x,y)dx + B(x,y)dy

similarly if you consider the vector field
F = \begin{pmatrix} A(x,y) \\ B(x,y)\end{pmatrix}
a line integral will independent of path, depending only on endpoints and equal to Q(\vec{x}_f) - Q(\vec{x}_i), and you could write:
dQ = F \bullet \vec{dx}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top