accountkiller
- 118
- 0
Homework Statement
Show that at constant volume V and temperature T but decreasing number N=n*N_{A} of particles the Van der Waals equation of state approaches the equation of state of an ideal gas.
Hint: Rearrange the equation of state into the explicit functional form P=P(v,T) and use x=1/v as a small parameter for a Taylor series P(x)=P(0)+dP/dx x + ...
Homework Equations
Van der Waals equation of state for a real gas:
( P + \frac{a}{v^{2}} ) ( v - b ) = RT
Taylor series expansion:
f(x)=f(a)+f'(a)(x-a)+\frac{f"(a)}{2!} (x-a)^{2} + ...
The Attempt at a Solution
Rearranging...
( P + \frac{a}{v^{2}} ) ( v - b ) = RT
P + \frac{a}{v^{2}} = \frac{RT}{v-b}
P = \frac{RT}{v-b} - \frac{a}{v^{2}}
Now it's been a while since I've done a Taylor expansion so I don't seem to remember how to go about it. Could someone just point me in the right direction? Thanks!
Last edited by a moderator: