Thermodynamics perfect gas Question

senan
Messages
17
Reaction score
0

Homework Statement



The partition function for a perfect gas containing N monatomic particles of mass m at a
temperature T is
Z =(1/N!)*VN[2(Pi)mkT/h2]3N/2
(2a) Use this partition function to find the molar Helmholtz free energy, molar internal
energy and molar heat capacity at constant volume of the gas.
(2b) Show that the molar entropy of the gas is given by
S = R[lnV/NA+(3/2)ln T +5/2+(3/2)ln(2(Pi)mk/h2)]

and find a simple, general expression for the change in entropy as a function of the temperatures and volumes of the initial and final states.
(2c) Show that this expression for the entropy of the gas is consistent with the expected
change in entropy for (i) an isothermal expansion of one mole of gas from volume V1 to
volume V2 and (ii) heating of one mole of gas from temperature T1 to temperature T2 at
constant volume.
P

Homework Equations



F=-kTlnZ
Cv=(dQ/dT)v
Cv=(dE/dT)v
E=-(dlnZ/dβ) with β=kT

The Attempt at a Solution



I got the helmholtz free energy using the F=-kTlnZ formula. I tried to get the Cv by getting E and then getting (dE/dT)v but the equation is very messy and long and I'm not sure its right. Is E the molar internal energy or do I need another formula.

I havn't really attempted the next two parts but help for part 1 would be appreacited thanks
 
Physics news on Phys.org
Isn't the formula for internal energy (E):
E = \beta^2 \frac{d(lnZ)}{d \beta}

otherwise, I don't think the units work out.

Also, for these types of problems, here's what I like to do. After finding the Helmholtz free energy (F), I like to use the relation:
S = - \left(\frac{\partial F}{\partial T}\right)_V
(you should be able to show this easily from the definition of Helmholtz free energy), and then get the internal energy from the relation F = E - TS.
 
I think using F = E - TS and S = -(dF/dT) relation will make things easier...
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top