Insights Things Which Can Go Wrong with Complex Numbers - Comments

micromass
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
22,169
Reaction score
3,327
micromass submitted a new PF Insights post

Things Which Can Go Wrong with Complex Numbers

complexnumbers-80x80.png


Continue reading the Original PF Insights Post.
 
  • Like
Likes Leo Authersh, Demystifier, kith and 3 others
Mathematics news on Phys.org
I thought Log(z) was defined to return the principal value, i.e. In the range ##(-\pi,\pi]##, while log(z) is left as shorthand for the set of values which satisfy ##z=e^w##. Thus ##log(z)=Log(z)+2\pi n i##.

Likewise, ##\sqrt .## is defined to return a complex number with argument in the range ##(-\pi,\pi]##. A difficulty here is that there is no corresponding shorthand (is there?) for the set of solutions to the square root operation.

It might be interesting to develop some generic rules for multivalued functions. E.g. If f() is such an operation, we might write {f(x)} for the set of values and F(x) for the principal value. If f distributes across multiplication (e.g. raising to a power, ##(ab)^c=a^cb^c##) then we could write ##F(ab)\in \{f(ab)\}\subseteq f(a)f(b)##.
 
I really like this insight. I wish I had seen a writeup like this 25 years ago while first learning about complex numbers; it wasn't until taking an elective in complex analysis my senior year of college that I finally started to get a handle on this. A link to this insight should become the standard reply to these kinds of questions that show up in the forums.

The use of Log versus log may be a little non-standard. I must admit that when I first skimmed the article I assumed the capital version was the principal branch, but I can never remember how people define the principle branch anyway (##-\pi \leq \theta < \pi##; ##-\pi < \theta \leq \pi##; ##0 \leq \theta < 2 \pi##, etc) so I always have to check how any given author defines it. When I fully read the insight the notation is clearly defined so I have no problem with it at all.

Great work!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
7
Views
728
3
Replies
108
Views
10K
Replies
7
Views
2K
Replies
15
Views
2K
Replies
5
Views
2K
Replies
1
Views
2K
Replies
13
Views
4K
Replies
7
Views
3K
Replies
7
Views
2K
Back
Top