futurebird
- 270
- 0
This is a problem from a take home final I turned in two day ago... I'm wondering if I got it right.
For f= \sum_{i=0}a_{i}x^{i}, set f^{(s)}= \sum_{i=0}a_{i}x^{si}.
4a. Prove that for integers n_{1}...n_{t}, (f^{(n_{1}...n_{t-1})})^{(n_{t})} = f^{(n_{1}...n_{t})}.
(f^{(n)})^{(m)}= \left( \sum_{i=0} a_{i}x^{ni} \right)^{(m)} = \sum_{i=0} a_{i}x^{mni}
So, (f^{(n_{1}...n_{t-1})})^{(n_{t})} = f^{(n_{1}...n_{t})}.
4b. Prove that if f divides f^{(n_{i})} for each n_{i}, then f divides f^{(n_{1}...n_{t})}
Since every term is only assuming higher powers, using the result in 4b, we can factor out x^{(n_{1}...n_{i-1}n_{i+1}...n_{t})} we have: f^{(n_{1}...n_{t})} = x^{(n_{1}...n_{i-1}n_{i+1}...n_{t})}(f^{(n_{i})}). f divides f^{(n_{i})} so f divides f^{(n_{1}...n_{t})}.---
It just seemed too simple... am I missing something here?
For f= \sum_{i=0}a_{i}x^{i}, set f^{(s)}= \sum_{i=0}a_{i}x^{si}.
4a. Prove that for integers n_{1}...n_{t}, (f^{(n_{1}...n_{t-1})})^{(n_{t})} = f^{(n_{1}...n_{t})}.
(f^{(n)})^{(m)}= \left( \sum_{i=0} a_{i}x^{ni} \right)^{(m)} = \sum_{i=0} a_{i}x^{mni}
So, (f^{(n_{1}...n_{t-1})})^{(n_{t})} = f^{(n_{1}...n_{t})}.
4b. Prove that if f divides f^{(n_{i})} for each n_{i}, then f divides f^{(n_{1}...n_{t})}
Since every term is only assuming higher powers, using the result in 4b, we can factor out x^{(n_{1}...n_{i-1}n_{i+1}...n_{t})} we have: f^{(n_{1}...n_{t})} = x^{(n_{1}...n_{i-1}n_{i+1}...n_{t})}(f^{(n_{i})}). f divides f^{(n_{i})} so f divides f^{(n_{1}...n_{t})}.---
It just seemed too simple... am I missing something here?