vela
Staff Emeritus
Science Advisor
Homework Helper
- 16,202
- 2,854
The Calc 1 approach to this problem is probably to multiply and divide by the conjugate:
\begin{align*}
\left(x^3 +x^2 +\frac{x}{2}\right)e^{\frac{1}{x}} - \sqrt{x^6+1}
&= \left[\left(x^3 +x^2 +\frac{x}{2}\right)e^{\frac{1}{x}} - \sqrt{x^6+1}\right]\frac{\left(x^3 +x^2 +\frac{x}{2}\right)e^{\frac{1}{x}} + \sqrt{x^6+1}}{\left(x^3 +x^2 +\frac{x}{2}\right)e^{\frac{1}{x}} + \sqrt{x^6+1}} \\
&= \frac{\left(x^3 +x^2 +\frac{x}{2}\right)^2e^{\frac{2}{x}} - (x^6+1)}{\left(x^3 +x^2 +\frac{x}{2}\right)e^{\frac{1}{x}} + \sqrt{x^6+1}} \\
\end{align*} It's fairly straightforward to analyze the problem from here with the usual Calc 1 methods.
\begin{align*}
\left(x^3 +x^2 +\frac{x}{2}\right)e^{\frac{1}{x}} - \sqrt{x^6+1}
&= \left[\left(x^3 +x^2 +\frac{x}{2}\right)e^{\frac{1}{x}} - \sqrt{x^6+1}\right]\frac{\left(x^3 +x^2 +\frac{x}{2}\right)e^{\frac{1}{x}} + \sqrt{x^6+1}}{\left(x^3 +x^2 +\frac{x}{2}\right)e^{\frac{1}{x}} + \sqrt{x^6+1}} \\
&= \frac{\left(x^3 +x^2 +\frac{x}{2}\right)^2e^{\frac{2}{x}} - (x^6+1)}{\left(x^3 +x^2 +\frac{x}{2}\right)e^{\frac{1}{x}} + \sqrt{x^6+1}} \\
\end{align*} It's fairly straightforward to analyze the problem from here with the usual Calc 1 methods.