Time constant for the current through the inductor

AI Thread Summary
The discussion focuses on calculating the time constant for the current through an inductor in a circuit with a voltage of 6 volts, a resistance of 10 ohms, and an inductance of 100 mH. The correct formula for the time constant is established as τ = 2L/R. A participant initially suggests that the equivalent resistance is 2R, leading to a time constant of L/2R, but this is corrected to R/2, confirming the original time constant of 2L/R. The key takeaway is that the time constant for the current through the inductor is indeed 2L/R.
syhpui2
Messages
23
Reaction score
0

Homework Statement



wjD8Y.png


http://i.imgur.com/wjD8Y.png

In the circuit below, V = 6 volts, R = 10 ohms, L = 100 mH. The switch has been open for a long time. Then, at time t = 0, the switch is closed.



What is the time constant for the current through the inductor?

2L / R


Homework Equations



TAU=l/R

The Attempt at a Solution



I am not sure how do I find the equvialent resistance in this case.
 
Last edited:
Physics news on Phys.org
Kill the source (short the voltage supply) and remove the inductor. Find the equivalent resistance at the terminals where the inductor was.

attachment.php?attachmentid=40334&stc=1&d=1319604076.gif
 

Attachments

  • Fig1.gif
    Fig1.gif
    2.2 KB · Views: 632
gneill said:
Kill the source (short the voltage supply) and remove the inductor. Find the equivalent resistance at the terminals where the inductor was.

attachment.php?attachmentid=40334&stc=1&d=1319604076.gif


Equvialent resistance is 2r then time constant should be L/2R?

instead of 2L/R?

Thanks
 
syhpui2 said:
Equvialent resistance is 2r then time constant should be L/2R?

instead of 2L/R?

Thanks

Nope. Those two resistors are not in series with respect to the open terminals. So the resistance is R/2. That makes your time constant 2L/R.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top