Time dependent Baker-Hausdorf formula

paweld
Messages
253
Reaction score
0
Could anyone show me the Baker-Hausdorf formula for product of exponentials in case of
operators which are time dependent. I know that there is a time-dependent version of this
formula which works under some assumptions are imposed on the operators which appear
in exponentials, like e.g. commutator commutes with all operators.
Thanks.
 
Physics news on Phys.org
Forgive me, but I don't see why any time-dependence would matter. It's an identity which applies to any and all operators. (I assume you're talking about the full theorem that includes double commutators, triple commutators, etc, not one that has been truncated.)
 
Thanks for answer. I looked for the identity which involves time ordered exponentials
and includes only double commutators. Fortunantely I've just found paper
(http://www.sciencedirect.com/science/article/pii/S0167691101001943)
where a formula which enabled me to compute what I wanted was given.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top