Time-Dependent Frequency Harmonic Oscillator

canbula
Messages
2
Reaction score
0

Homework Statement


Consider an harmonic oscillator with time-dependent frequency as:
\omega (t)=\omega_0 * \exp^{- \lambda t}
Find the time dependence of the ground state energy of this oscillator for \lambda << 1 situation.

Homework Equations


H=H_{0} + V(t)
H_{0} = \frac{p^2}{2m} + \frac{1}{2} m \omega_{0}^{2} x^{2}
and if we use the power series expansion for \lambda << 1 we get
V(t) = - \frac{1}{2} m \omega_{0}^2 \lambda t x^{2}

The Attempt at a Solution


I know that I should use the time-dependent perturbation theory, but I am not good at it. So I need some help to solve this problem.
 
Last edited:
Physics news on Phys.org
What are the relevant equations for time dependent perturbation theory?
 
sorry I added them to my original post
 
next, how do we express the energy eigenvalues in time-dependent perturbation theory? ;)
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top