Time-Dependent Perturbation Theory and Transition Probabilities

andrewryno
Messages
1
Reaction score
0
I'm rather stuck on this problem. I seem to be having issues with the simplest things on this when trying to get started.

Homework Statement



There is a particle with spin-1/2 and the Hamiltonian H_0 = \omega_0 S_z. The system is perturbed by:

H_1 = \omega_1 S_x e^{\frac{-t}{\tau}}

Find the probability that the particles' spin flips at t \rightarrow \infty.

Homework Equations



H_0 = \omega_0 S_z
H_1 = \omega_1 S_x e^{\frac{-t}{\tau}}

Transition probability:
P_{if}\left(t\right) = \left|-\frac{i}{\hbar} \int_0^t <\psi_f\left|V\left(t'\right)\right|\psi_i> e^{i \omega_{fi} t'} dt'\right|^2

The Attempt at a Solution



Unfortunately I don't really have any concrete math to post in this section. I understand the derivation of the transition probability--looked it over both in Griffiths and Zettili (as well as my professors notes, which are mostly incomprehensible). I understand that I need to take the perturbation (H_1, or V in the probability equation), plug that in and replace the final and initial states with the ground and flipped states for the spin 1/2 particle. That's the main part I'm getting stuck at (probably one of many issues I'll face in this homework).

Now, I could probably solve the Hamiltonian for a general wavefunction in the ground state, but I feel like doing that wouldn't help me at all. I just figured that I could change the bra-ket notation in the formula to the integral notation and solve that (one of the examples in the book did it, but for an infinite well instead). I could probably then do the same thing for the state where the spin is flipped. Is that the right way to approach it? If not, I'm completely out of ideas.
 
Physics news on Phys.org
I would start by working out what V(t)|\psi_i> = H_1(t)|\uparrow>_z yields.
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top