- #1

- 506

- 143

- I
- Thread starter Swamp Thing
- Start date

- #1

- 506

- 143

- #2

- 16,829

- 6,650

The way you would expect it to, according to the Schrödinger equation for a free particle.

- #3

- 506

- 143

- #4

- 8,401

- 2,581

After turning off the potential, the wave function will evolve as a superposition of plane waves.

Write:

[itex]\psi(x,t=0) = \int dk e^{ikx} \tilde{\psi}(k)[/itex]

where [itex]\tilde{\psi}(k) = \frac{1}{2\pi} \int dx e^{-ikx} \psi(x,t=0)[/itex]

After the potential turns off, [itex]e^{ikx}[/itex] evolves into [itex]e^{i (kx - \omega t)}[/itex], where [itex]\omega = \frac{E_k}{\hbar} = \frac{\hbar k^2}{2m}[/itex]. So for [itex]t > 0[/itex],

[itex]\psi(x,t) = \int dk e^{ikx - \omega t} \tilde{\psi}(k)[/itex]

We can write this in another way:

[itex]\psi(x,t) = \int dx' \int dk e^{ikx - \omega t} \int dx' e^{-i k x'} \psi(x',t=0)[/itex]

[edit: added factor of [itex]\frac{1}{2\pi}[/itex]]

Now under the questionable assumption that we can swap the order of integration, we can also write:

[itex]\psi(x,t) = \int dx' \psi(x', t=0) \frac{1}{2\pi} \int dk e^{ik(x - x') - \omega t}[/itex]

If we define [itex]G(x', x, t) = \frac{1}{2\pi} \int dk e^{ik(x-x') - \omega t}[/itex], then we can write:

[itex]\psi(x,t) = \int dx' G(x', x, t) \psi(x',t=0)[/itex]

where [itex]G[/itex] is the "Green function" for the Schrodinger equation. This can be interpreted in terms of amplitudes:

The amplitude (density) for finding the particle at [itex]x[/itex] at time [itex]t[/itex] ([itex]\psi(x,t)[/itex] is the sum over all points [itex]x'[/itex] of the amplitude for finding the particle at [itex]x'[/itex] at time [itex]t[/itex] ([itex]\psi(x, t=0)[/itex]) times the amplitude for the particle to go from [itex]x'[/itex] at time [itex]t=0[/itex] to [itex]x[/itex] in time [itex]t[/itex] ([itex]G(x', x, t)[/itex].

Last edited:

- #5

- 506

- 143

thank you!

- #6

- 8

- 0

- Replies
- 1

- Views
- 4K

- Last Post

- Replies
- 3

- Views
- 1K

- Last Post

- Replies
- 5

- Views
- 4K

- Last Post

- Replies
- 6

- Views
- 3K

- Last Post

- Replies
- 1

- Views
- 1K

- Last Post

- Replies
- 2

- Views
- 3K

- Last Post

- Replies
- 1

- Views
- 2K

- Last Post

- Replies
- 3

- Views
- 2K

- Last Post

- Replies
- 3

- Views
- 659

- Last Post

- Replies
- 4

- Views
- 3K