Time to reach thermal equilibrium with radiation

AI Thread Summary
The discussion focuses on calculating the time required for an object to reach thermal equilibrium with radiation in a universe with a homogeneous distribution of light sources. It examines a model where the universe has an origin and static space, noting that while the integral of bolometric flux is finite, it diverges as time approaches infinity. The conversation highlights the significant difference in vibratory energy received from the Sun compared to stars, with the Sun providing approximately 15.2 million times more energy. It concludes that the increase in temperature from stellar radiation is negligible, particularly for bodies already at temperatures above absolute zero, and emphasizes the need for a formula to determine the time to reach thermal equilibrium in such conditions. The discussion underscores the complexity of thermal dynamics in a radiation field.
hellfire
Science Advisor
Messages
1,048
Reaction score
1
I would like to do some calculations for the evolution of the temperature of the universe with a homogeneous distribution of light sources in some simple models. For example, starting with the simplest one, consider a universe with an origin of time and with a static space. The integral of the bolometric flux received from different shells from r = 0 up to r = c T (T the age of the universe) is finite and there is no Olbers' paradox. However, such a model "tends" to a paradox as T -> infinity with a diverging flux integral. Consider an object which is created at the same time than the universe (t = 0). How can be calculated the time (or time scale) for this body to reach nearly thermal equilibrium with the radiation emitted by the light sources (and on what does this depend)? Let's call this time T_eq. Consider now a body created (or "inserted in this universe") at t > T_eq. How long does it take for this body to reach thermal equilibrium?
 
Last edited:
Astronomy news on Phys.org
Let's start with Charles-Edouard Guillaime and this translation of his article `La Temp'erature de L'Espace', La Nature (1896)

Captain Abney has recently determined the ratio of the light from the starry sky to that of the full Moon. It turns out to be 1/44, after reductions for the obliqueness of the rays relative to the surface, and for atmospheric absorption. Doubling this for both hemispheres, and adopting 1/600,000 as the ratio of the light intensity of the Moon to that of the Sun (a rough average of the measurements by Wollaston, Douguer and Z\"ollner), we find that the Sun showers us with 15,200,000 time more vibratory energy than all the stars combined. The increase in temperature of an isolated body in space subject only to the action of the stars will be equal to the quotient of the increase of temperature due to the Sun on the Earth's orbit divided by the fourth root of 15,200,000, or about 60. Moreover, this number should be regarded as a minimum, as the measurements of Captain Abney taken in South Kensington may have been distorted by some foreign sources of light. We conclude that the radiation of the stars alone would maintain the test particle we suppose might have been placed at different points in the sky at a temperature of 338/60 = 5.6 abs. = $-207^\circ$.4 centigrade. We must not conclude that the radiation of the stars raises the temperature of the celestial bodies to 5 or 6 degrees. If the star in question already has a temperature that is very different from absolute zero, its loss of heat is much greater. We will find the increase of temperature due to the radiation of the stars by calculating the loss using Stefan's law. In this way, we find that for the Earth, the temperature increase due to the radiation of the stars is less than one hundred-thousandth of a degree. Furthermore, this figure should be regarded as an upper limit on the effect we seek to evaluate.
 
Thank you turbo-1, but at first I am looking for a formula for the time it takes to reach thermal equilibrium in a radiation field.
 
TL;DR Summary: In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect alien signals, it will further expand the radius of the so-called silence (or rather, radio silence) of the Universe. Is there any sense in this or is blissful ignorance better? In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect...
Thread 'Could gamma-ray bursts have an intragalactic origin?'
This is indirectly evidenced by a map of the distribution of gamma-ray bursts in the night sky, made in the form of an elongated globe. And also the weakening of gamma radiation by the disk and the center of the Milky Way, which leads to anisotropy in the possibilities of observing gamma-ray bursts. My line of reasoning is as follows: 1. Gamma radiation should be absorbed to some extent by dust and other components of the interstellar medium. As a result, with an extragalactic origin, fewer...
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Back
Top