(adsbygoogle = window.adsbygoogle || []).push({}); [SOLVED] Topology: Nested, Compact, Connected Sets

1. Assumptions: X is a Hausdorff space. {K_n} is a family of nested, compact, nonempty, connected sets. Two parts: Show the intersection of all K_n is nonempty and connected.

That the intersection is nonempty: I modeled my proof after the widely known analysis proof. I took a sequence (x_n) such that [tex]x_n\in K_n[/tex] for all n. Assuming x_n has a limit point x (AM I ALLOWED TO ASSUME THE SEQUENCE HAS A LIMIT POINT?), then x is in the sequential closure of K_n, which is contained in the closure of K_n, which is equal to K_n: [tex]x \in SCl(K_n) \subset Cl(K_n) = K_n[/tex] (since X is Hausdorff, all compact sets are closed). Thus [tex]x\in K_n[/tex] for all n, so it is in the intersection. Therefore the intersection is non-empty. This all hinges on the fact that I assumed there was a limit point ... am I talking in circles, or is this okay?

That the intersection is connected: I'm guessing I should be using contradiction. So, suppose the intersection [tex]K=\bigcap^{\infty}K_n[/tex] is not connected, then there exists open sets U, V such that [tex]U\cap V=\emptyset[/tex], [tex]U\cap K\neq\emptyset[/tex], [tex]V\cap K\neq\emptyset[/tex], and [tex]K\subset U\cup V[/tex]. I also know then that [tex]U\cap K_n\neq\emptyset[/tex] for any n and likewise for V. But I don't know that there is any n for which [tex]K_n\subset U\cup V[/tex] - which would be the contradiction I am looking for, since every K_n is connected. Or is this not the right method at all?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Topology: Nested, Compact, Connected Sets

**Physics Forums | Science Articles, Homework Help, Discussion**