dontcare
- 12
- 0
A cook holds a 2 kg cartoon of milk at arm's length. What Force F_{B} must be excerted by the biceps muscle? (Ignore the weight of the forearm) See figure attached. \theta = 75 degrees Please help explain what I'm doing wrong. Correct answer is 312 N.
\Sigma\eta = F(sin 75)(.08 m) - (2 kg)(9.8 m/s^2)(.25 m) = 67 N
\Sigma F_{y} = F_{y} + (67 N)(sin 75) - (2kg)(9.8 m/s^2) = 0
F_{y} = -45.4 N
\Sigma F_{x} = (67 N)(cos 75)
F_{x} = 17 N
F_{B} = \sqrt{-45.4^2 + 17^2} = 48. 5 N
\Sigma\eta = F(sin 75)(.08 m) - (2 kg)(9.8 m/s^2)(.25 m) = 67 N
\Sigma F_{y} = F_{y} + (67 N)(sin 75) - (2kg)(9.8 m/s^2) = 0
F_{y} = -45.4 N
\Sigma F_{x} = (67 N)(cos 75)
F_{x} = 17 N
F_{B} = \sqrt{-45.4^2 + 17^2} = 48. 5 N
Attachments
Last edited: