DivGradCurl
- 364
- 0
Hi all,
Quick quantum question. I understand the total angular momentum operation \hat{L}^2 \psi _{nlm} = \hbar\ell(\ell + 1) \psi _{nlm} which means the total angular momentum is L = \sqrt{\hbar\ell(\ell + 1)} But how about applying this to an arbitrary superposition of eigenstates such as this \psi = \frac{1}{\sqrt{2}} \psi _{310} + \frac{1}{\sqrt{2}} \psi _{420} and trying to find the expected value of the total angular momentum? Here is my best guess: \hat{L}^2 \psi = \frac{1}{\sqrt{2}} \hbar \, 1(1+ 1) \psi _{310} + \frac{1}{\sqrt{2}} \hbar \, 2(2 + 1) \psi _{420} = \frac{2}{\sqrt{2}} \hbar \psi _{310} + \frac{6}{\sqrt{2}} \hbar \psi _{420} so the expected value is \langle L ^2 \rangle = \left( \frac{2}{\sqrt{2}} \hbar \right)^2 + \left( \frac{6}{\sqrt{2}} \hbar \right)^2 which means the expected value of the total angular momentum is maybe \langle L \rangle = \sqrt{ \left( \frac{2}{\sqrt{2}} \hbar \right)^2 + \left( \frac{6}{\sqrt{2}} \hbar \right)^2} Is this correct? Thank you
Quick quantum question. I understand the total angular momentum operation \hat{L}^2 \psi _{nlm} = \hbar\ell(\ell + 1) \psi _{nlm} which means the total angular momentum is L = \sqrt{\hbar\ell(\ell + 1)} But how about applying this to an arbitrary superposition of eigenstates such as this \psi = \frac{1}{\sqrt{2}} \psi _{310} + \frac{1}{\sqrt{2}} \psi _{420} and trying to find the expected value of the total angular momentum? Here is my best guess: \hat{L}^2 \psi = \frac{1}{\sqrt{2}} \hbar \, 1(1+ 1) \psi _{310} + \frac{1}{\sqrt{2}} \hbar \, 2(2 + 1) \psi _{420} = \frac{2}{\sqrt{2}} \hbar \psi _{310} + \frac{6}{\sqrt{2}} \hbar \psi _{420} so the expected value is \langle L ^2 \rangle = \left( \frac{2}{\sqrt{2}} \hbar \right)^2 + \left( \frac{6}{\sqrt{2}} \hbar \right)^2 which means the expected value of the total angular momentum is maybe \langle L \rangle = \sqrt{ \left( \frac{2}{\sqrt{2}} \hbar \right)^2 + \left( \frac{6}{\sqrt{2}} \hbar \right)^2} Is this correct? Thank you