Total Energy of Camera Capacitor

AI Thread Summary
The discussion revolves around calculating the total energy produced by a camera flash capacitor powered by a 300V battery, which generates 5000W of light for 0.005 seconds. To find the total energy, participants note that power is energy per time, leading to the conclusion that energy can be calculated as power multiplied by time. For capacitance, the relationship between charge, voltage, and energy is emphasized, suggesting that solving for total energy first will simplify finding capacitance using the energy formula. A hypothetical scenario is also presented where a 120V battery is considered, prompting discussions on the potential light power output. Overall, the thread focuses on applying physics equations to determine energy and capacitance in a practical context.
JumpinJohny
Messages
15
Reaction score
0

Homework Statement


A flash attatchment for a professional camera stores energy in a capactior. When a picture is taken, all of the charge is converted to energy, and the capacitor is fully discharged.

A.Assume the battery charging the capacitor is a 300V battery. When the light flashes, it produces 5000W of light for a time of .005s. Find the total energy produced by the flash.

B.Find the capacitance.

C.If the battery were replaced with a battery with a potential difference of 120V, how much light power could the flash attachment produce?


Homework Equations



C= q/V
PE = qV
U=(1/2)CV^2

The Attempt at a Solution


I really don't know. At first I thought I'd just solve for capacitance(which you can't anyway), until I looked at part B. I'm assuming you need to solve for the potential energy of the flash, but I'm not sure how to go about doing that.
 
Physics news on Phys.org
I am pretty sure in that in solving for the total energy, you just need to find the potential energy. Electric potential energy would be PE=qV. There is no charge stated in the problem, so I'm not sure where to go from there.
 
For A) Power is a measure of Energy per Time. Think about what a Watt is and how it relates to the time given, 0.005s.

For B) Once you've answered part A, it should be easy to solve for Capacitance using the equation for U.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top