Transfer function with laplace transform

vipinpsharma
Messages
6
Reaction score
0
Hi,

I am trying to derive one transfer function for a system, but got stuck at a point. I want the solution to the ratio V_o(s)/V_g(s), the transfer function.

V_o(s) = [a*L{(V_g)^2} - b*L{V_o * (V_g)^2} - c*V_g(s) - d/s]*z(s)

In the following equation, I have:

s-> lapace transform variable
a,b,c and d -> some constants
V_o -> system output; V_o(s) = L{V_o} = laplace transform of system output
V_gs -> system input; V_gs(s) = L{V_g}
z -> another system input; z(s) = laplace transform of z

If somebody can give step by step derivation for this, that would be great!

thanks,
-- vipin
 
Physics news on Phys.org
This system doesn't seem like a linear system, it seems no transfer function can be defined.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top