Transformation from cartesian to cylindrical coordinates

Otacon23
Messages
3
Reaction score
0

Homework Statement



I'm trying to get to grips with Godel's 1949 Paper on Closed Time-like Curves (CTCs). Currently I'm trying to confirm his transformation to cylindrical coordinates using maple but seem to keep getting the wrong answer.

Homework Equations



The line element in cartesian coordinates is: ##dS^2 = a^2[dx_0^2-dx_1^2+\frac{1}{2}##e##2x_1####dx_2^2-dx_3^2+2##e##x_1####dx_0dx_2]## using the following substitutions:
##e####x_1#### = \cosh(2r) + \cos(\phi)\sinh(2r)##
##x_2e####x_1####= \sqrt{2}\sin(\phi)sinh(2r)##
##\tan(\frac{\phi}{2} + \frac{x_0 - 2t}{2\sqrt{2}}) = e####2r####\tan(\frac{\phi}{2})##
##x_3 = 2y##
I need to show that the line element is ##dS^2 = 4a^2[dt^2 -dr^2 -dy^2 + (\sinh^4(r) - \sinh^2(r))d\phi^2 + 2\sqrt{2}\sinh^2(r)d\phi dt]##

The Attempt at a Solution



I started by differentiating these four equations to obtain expressions for ##dx_0, dx_1, dx_2, dx_3##

## dx_0 = 2e####-2r####\sqrt{2}cos^2(\frac{\phi}{2} + \frac{x_0 - 2t}{2\sqrt{2}})(\frac{1}{2}\sec^2(\frac{\phi}{2})d\phi - 2\tan(\frac{\phi}{2})dr) + 2dt - \sqrt{2}d\phi##

##dx_1 =2e####-x_1####(sinh(2r) + cos(\phi)cosh(2r))dr - e####-x_1####sin(\phi)sinh(2r)d\phi##

##dx_2 = e####-x_1####sinh(2r)(\sqrt{2}cos(\phi) +x_2\sin(\phi))d\phi + 2e####-x_1####(\sqrt{2}sin(\phi)\cosh(2r)-x_2\sinh(2r)-cos(\phi)\cosh(2r))dr##

##dx_3 = 2dy##

In maple I then defined the variable 'X' to be
##X := a^2[dx_0^2-dx_1^2+\frac{1}{2}##e##2x_1####dx_2^2-dx_3^2+2##e##x_1####dx_0dx_2] - 4a^2[dt^2 -dr^2 -dy^2 + (\sinh^4(r) - \sinh^2(r))d\phi^2 + 2\sqrt{2}\sinh^2(r)d\phi dt];##

Then defined 'XX' to be
##XX:=(subs(dx_0 = ..., dx_1 = ..., dx_2 = ..., dx_3 = ..., X));##
Then simplified the result hoping it to be zero.
##simplify(XX);##
Instead of zero I receive 4 pages or so of trash, so basically can anyone point out where or how I have gone askew?

Many thanks!
 
Physics news on Phys.org
I tried letting all the variables equal to a random constant and managed to get ##'XX'## to equal 0. It seems that I get a non-zero value of ##'XX'## whenever I let any of ##t, r, \phi## remain a variable and not a constant, which leads me to believe that my substitution and hence my differentiation is incorrect. If anyone has the time to double check any of my differentiations I would really appreciate it!
Maths Love xx
 
Narrowed it down to there just being a problem with ##dx_0##
Anyone care to look?
 
Otacon23 said:
## dx_0 = 2e####-2r####\sqrt{2}cos^2(\frac{\phi}{2} + \frac{x_0 - 2t}{2\sqrt{2}})(\frac{1}{2}\sec^2(\frac{\phi}{2})d\phi - 2\tan(\frac{\phi}{2})dr) + 2dt - \sqrt{2}d\phi##
You have an x0 on the RHS side there. Assuming you want rid of that, I get
## dx_0 = 2dt - \sqrt{2}d\phi + \sqrt{2}\frac{2 sin(\phi)dr+d\phi}{e^{-2r}cos^2(\phi/2)+e^{2r}sin^2(\phi/2))} ##
The denominator could also be written ## cosh(2r) - sinh(2r)cos(\phi) ##
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top