Transformation matrix on tensors

kernelinho
Messages
1
Reaction score
0
Hello.

I wasn't sure whether to post this here on in some of the physics sections.

I have a rank 2 tensor in one coordinate reference system [x1, x2, x3], the one where only the principal elements are non zero: R=[ a11 0 0; 0 a22 0; 0 0 a33 ].

I want the tensor R in some other orthogonal coordinate reference system. I have the transformation matrix U from the system [x1, x2, x3] to the second one [X1, X2, X3].

I know how to use U to transform vectors from one system to the other:

[V1; V2; V3]= U [v1; v2; v3]

But I don't know what operation to do to transform a tensor. I'm led to believe that it could be something like

[R(in Xi)] = U^-1 R(in xi) U

But I'm not sure whether this is right nor what's the rationale for it.

I would appreciate any help you could give me.
 
Physics news on Phys.org
Same thing. Think of the tensor and transformation as matrices and multiply the matrices.
 
In addition, even if the tensor was not representable as a matrix (two dimensional rectangular array of numbers), you still have the functional representation, T(v) is a multilinear map from some space V to some space W, and you have linear maps C and C' from V to V' and W to W' respectively, where V' and W' are identical to V and W except for the coordinate maps for their elements. Then C'(T(C-1v)) is T with the coordinate change applied, as T can only act on objects in V and transforms them to W objects. The C's take care of translating the objects from V' and into W', where if v is a multivector, the linear transformations are distributed appropriately. By linearity, we have C'TC-1 as the proper tensor, as you have already surmised.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...

Similar threads

Back
Top