ghwellsjr said:
I'm saying that since two inertial observers can experimentally determine that the Doppler based on light is the same for both of them as they approach each other and that it is the same for both of them as they recede away from each other and that these two Doppler factors are reciprocals of each other, then that is all they need to know to predict ... their accumulated age ratio ... from the Doppler factor. I'm also saying that this analysis does not require ... the establishment or definition of any frame of reference or coordinate system...
Still not true. Your premise is that we can experimentally determine that the Doppler shift when receding
at a certain speed is the reciprocal of the Doppler shift when approaching
at the same speed. The problem is that you haven't thought about how they would deterime that they are approaching each other at the same speed that they were formerly receding from each other. They obviously can't use the Doppler shift, because that would be circular and devoid of physical content. In other words, they can't simply
define their approach speed to be equal to their receed speed when the Doppler shifts are reciprocal. For that proposition to have physical meaning, they need some independent measure of speed, which comes from the systems of coordinates in which the homogeneous and isotropic equations of mechanics hold good. There is simply no way of getting the effects of special relativity without establishing the correlation (implicitly or explicitly) with inertia.
ghwellsjr said:
I'm also saying that this analysis does not require any ... theory about transforming coordinates between different coordinate systems, which is what universal_101 is contending.
Well, it obviously doesn't require any transforming of coordinates, but it does imply Lorentz invariance, which entails the covariance of the physical parameters under a certain class of transformations.
The answer to the OP is that the physical law describing the half-life of a sub-atomic particle moving in the x, y, and z directions by the amounts dx, dy, dz in the time dt is purely a function of the quantity sqrt[dt^2 - dx^2 - dy^2 - dz^2] where x,y,z,t are any single system of inertial coordinates. No transformation is involved. (But of course x,y,z,t do have to be coordinates in terms of which the laws of mechanics hold good.)
In fact, we find that every physical process and phenomenon (not just the half-lives of sub-atomic particles) has this same form, in the sense that the physical laws don't depend on the absolute values of x,y,z,t, nor even on the absolute values of dx,dy,dz,dt or their ratios, but only on the quantity dt^2 - dx^2 - dy^2 - dz^2. The fact that these physical laws work equally well in terms of any standard system of inertial spacetime coordinates implies that this quadratic quantity is the same in all of them. After noticing this, and then seeing it confirmed over and over again for all known physical laws, we begin to expect it to be true, even when trying to formulate the laws governing previously unknown phenomena. This property, called Lorentz invariance, is not itself a physical law, it is an attribute of all known physical laws.
It's useful to know about Lorentz invariance because it enables us to compute things very easily by taking a short cut. If we already know that a certain physical law (such as the law for the half-life of a particle) is Lorentz invariant, we know that we can compute things in any convenient system of standard inertial coordinates, and then very simply express the results in terms of any other system of coordinates using the Lorentz transformation (which happens to be the transformation that preserves that quadratic quantity appearing in the physical laws). But this is just a computational shortcut, used by people who know what they're doing. If it confuses the OP, he can just go ahead and do things the more laborious (and less insightful) way.