Transforming Positive Definite Quadratic Forms: A Simplification Approach

Office_Shredder
Staff Emeritus
Science Advisor
Gold Member
Messages
5,702
Reaction score
1,587
I'm having a bit of a brain fart here. Given a positive definite quadratic form
\sum \alpha_{i,j} x_i x_j
is it possible to re-write this as
\sum k_i x_i^2 + \left( \sum \beta_i x_i \right)^2
with all the ki positive? I feel like the answer should be obvious
 
Physics news on Phys.org
Office_Shredder said:
I'm having a bit of a brain fart here. Given a positive definite quadratic form
\sum \alpha_{i,j} x_i x_j
is it possible to re-write this as
\sum k_i x_i^2 + \left( \sum \beta_i x_i \right)^2
with all the ki positive? I feel like the answer should be obvious

Yes. Every quadratic form

\sum \alpha_{i,j} x_i x_j

determines a matrix (\alpha_{i,j})_{i,j}. The only thing you need to do is diagonalize this matrix.
 
Note that the matrix corresponding to any quadratic form is symmetric (we take a_{ij}= a_{ji} equal to 1/2 the coefficient of x_ix_j. Therefore, the matrix corresponding to a quadratic form is always diagonalizable.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top