materdei
- 1
- 0
<< Moderator Note -- thread moved to the Homework Help forums >>[/color]
I'm stuck on a problem, and I'm in serious need of help.
I) Problem:
Find the solution to f (t) = 2 \int^t_0 f'(u) sin 3 (t-u) \ du + 2 cos (3t).
Also find f (0).II) Solution, so far:
F(s) = 2 (s F(s) - f(0)) * \frac{3}{(s^2 + 3^2)} + \frac{2}{(s^2 + 3^2)}
F(s) (1 - \frac{(6 s)}{(s^2 + 3^2)} = \frac{(2 s - 6 f(0)}{(s^2 + 3^2)}
F(s) = \frac{(2 s - 6 f(0)}{(s^2 + 3^2 - 6s)}And this is basically where I'm stuck.
III) Proposed final solution:
Rewrites (s^2 + 3^2 - 6s) to (s - 3)^2
F(s) = 2 s \frac{(1)}{(s - 3)^2)} - 6 f(0) \frac{(1)}{((s - 3)^2)}
f(t) = 2 \mathcal {L^{-1}} (s) \mathcal {L^{-1}} \frac{(1)}{(s - 3)^2} - 6 f(0) \mathcal {L^{-1}} \frac{(1)}{(s - 3)^2}
f(t) = 2 t * t e^{3t} - 6 f(0) t e^{3t}
f(t) = 2 t^2 e^{3t} - 6 f(0) t e^{3t}
Insert t = 0
f(0) = 0* 2 e^{3t} - 0 * 6 f(0) e^{3t} = 0
Hence, f(0) = 0 and therefore - 6 f(0) t e^{3t} = 0
which gives f(t) = 2 t^2 e^{3t}
However, I feel VERY unsure about this.
Any pointers and feedback are immensly welcome!
I'm stuck on a problem, and I'm in serious need of help.
I) Problem:
Find the solution to f (t) = 2 \int^t_0 f'(u) sin 3 (t-u) \ du + 2 cos (3t).
Also find f (0).II) Solution, so far:
F(s) = 2 (s F(s) - f(0)) * \frac{3}{(s^2 + 3^2)} + \frac{2}{(s^2 + 3^2)}
F(s) (1 - \frac{(6 s)}{(s^2 + 3^2)} = \frac{(2 s - 6 f(0)}{(s^2 + 3^2)}
F(s) = \frac{(2 s - 6 f(0)}{(s^2 + 3^2 - 6s)}And this is basically where I'm stuck.
III) Proposed final solution:
Rewrites (s^2 + 3^2 - 6s) to (s - 3)^2
F(s) = 2 s \frac{(1)}{(s - 3)^2)} - 6 f(0) \frac{(1)}{((s - 3)^2)}
f(t) = 2 \mathcal {L^{-1}} (s) \mathcal {L^{-1}} \frac{(1)}{(s - 3)^2} - 6 f(0) \mathcal {L^{-1}} \frac{(1)}{(s - 3)^2}
f(t) = 2 t * t e^{3t} - 6 f(0) t e^{3t}
f(t) = 2 t^2 e^{3t} - 6 f(0) t e^{3t}
Insert t = 0
f(0) = 0* 2 e^{3t} - 0 * 6 f(0) e^{3t} = 0
Hence, f(0) = 0 and therefore - 6 f(0) t e^{3t} = 0
which gives f(t) = 2 t^2 e^{3t}
However, I feel VERY unsure about this.
Any pointers and feedback are immensly welcome!
Last edited by a moderator: