Tricky problem: Falling plank originally leaning against a wall

In summary, the problem involves a plank of length 2l leaning against a wall with no friction. The top of the plank starts to slip downward and the goal is to show that it loses contact with the wall when it is at two-thirds of its initial height. The solution involves finding the torque and using energy conservation to evaluate the angular velocity at two-thirds of the original height. The center of mass follows a circular path and conservation of energy is applied to find the velocity of the center of mass as a function of angle. Both rotational and translational kinetic energy terms are included.
  • #1
Order
97
3

Homework Statement



A plank of lengt 2l leans against a wall. It starts to slip downward without friction. Show that the top of the plank loses contact with the wall when it is at two-thirds of its initial height.
Hint: Only a single variable is needed to describe the system. Note the motion of the center of mass.

Homework Equations



[tex]\tau=I\alpha[/tex]
Energy conservation

The Attempt at a Solution



I don't get very far at all.

First of all I evaluate the torque of the system: [tex]\tau=lMg\sin \theta=I\ddot{\theta}=\frac{Ml^{2}}{3}\ddot{\theta},[/tex] which leads to [tex]\ddot{\theta}=\frac{3g}{l}\sin \theta.[/tex] This is not possible to solve exactly and therefore is of no help.

Next, I try energy conservation to evaluate the angular velocity at a height of two-thirds of the original: [tex]Mgl\cos\theta=\frac{1}{2}\frac{Ml^{2}}{3}\omega^{2}+\frac{2}{3}Mgl\cos\theta,[/tex] which leads to the result [tex]\omega^{2}=\frac{2g}{l}\cos\theta.[/tex] Now this is of no use either since it cannot be combined with the first equation. It is a relation relative to the original angle, whereas the first equation above is a general differential equation.

Now if neither torque evalutations nor energy conservation leads anywhere, I don't know how to go on. Does anyone have a hint?
 
Physics news on Phys.org
  • #2
Draw a free body diagram.

You are finding the torque about which point?
 
  • #3
It's a tricky problem. Use the hint: What path does the CM follow as the plank falls?
 
  • #4
SammyS said:
Draw a free body diagram.

You are finding the torque about which point?

Here is a FBD as I think it should be. In the diagram I also think that the normal forces are [tex]N_{1}=Mg\sin\theta[/tex] and [tex]N_{2}=Mg\cos\theta[/tex] where the latter might be most interesting. See my post below for further thoughts.
 

Attachments

  • Free body diagram - falling plank.jpg
    Free body diagram - falling plank.jpg
    8.5 KB · Views: 894
  • #5
Order said:
In the diagram I also think that the normal forces are [tex]N_{1}=Mg\sin\theta[/tex] and [tex]N_{2}=Mg\cos\theta[/tex]
How did you determine this?
 
  • #6
Doc Al said:
It's a tricky problem. Use the hint: What path does the CM follow as the plank falls?

Sure, I can try that. First of all I can evaluate the center of mass in the x direction. [tex]x_{cm}=l\cos\theta[/tex] and differentiating this gives [tex]\frac{dx_{cm}}{dt}=-l\sin\theta\omega[/tex] Now since theta is evaluated in the positive direction, whereas I am interested in the negative direction, I revise this to [tex]\frac{dx_{cm}}{dt}=l\sin\theta\omega[/tex] Differntiating once again yields [tex]\frac{dx^{2}_{cm}}{dt^{2}}=l\cos\theta\omega^{2}+l\sin\theta\alpha[/tex] Now putting in relations for alpha and omega in my original post, slightly changed, I get [tex]\frac{dx^{2}_{cm}}{dt^{2}}=6g\cos\theta(\cos\theta-cos\phi)-3g\sin^{2}\theta,[/tex] where phi is the starting angle.

At first I thought Í could find where the acceleration is zero to find where the plank loses contact, but I find that the acceleration is always positive. Instead I might use the results from my free body diagram in post above to solve the equation [tex]M\frac{dx^{2}_{cm}}{dt^{2}}=N_{1}=Mg\cos\theta[/tex] which leads to the equation [tex]6\cos\theta(\cos\theta-\cos\phi)-3\sin^{2}\theta=\cos\theta[/tex] to get a relation between theta and phi. Unfortunately it seems like a very difficult equation to solve.

I can do the same thing with the center of mass in the y direction. Now the result is [tex]y_{cm}=l\sin\theta[/tex] [tex]\frac{dy_{cm}}{dt}=l\cos\theta\omega[/tex] [tex]\frac{dy^{2}_{cm}}{dt^{2}}=l\sin\theta\omega^{2}-l\cos\theta\alpha[/tex] But unless my equation I found above is correct, I am stuck once again.
 
  • #7
Describe in words the path of the CM. It's surprisingly simple. (The path, not the problem.)
 
  • #8
Doc Al said:
How did you determine this?

On closer thought I need to revise this to [tex]N_{2}=\frac{\sin\theta\cos\theta}{2}[/tex] where the trignonometric part is due to the force being applied perpendicular to the gravity force through the plank. The factor 2 is due to the normal force being at twice the length. I think this should be correct.
 
  • #9
Doc Al said:
Describe in words the path of the CM. It's surprisingly simple. (The path, not the problem.)

I don't know how this helps. Will think about it. But as for know I can readily see that it is a circle.
 
  • #10
Order said:
But as for know I can readily see that it is a circle.
Excellent! Now apply conservation of energy to find the velocity of the CM as a function of angle.
 
  • #11
Doc Al said:
Excellent! Now apply conservation of energy to find the velocity of the CM as a function of angle.

I still have no clue why this is good. I try to think it through and although it seems like something good I can't see the end of the string.

I can express it as a function of a fraction of the original height, or, as I guess you wanted me too, express it as a difference of the original and the final angle: [tex]v^{2}_{CM}=2lg(\sin\phi-\sin\theta)[/tex] or if a is a fraction of the original height [tex]v^{2}_{CM}=2lg\sin\phi(1-a)[/tex]
 
  • #12
There's only one angle here: The angle the plank makes with the wall. (Assume it starts out perfectly flat against the wall, and is then given a nudge.)

To apply conservation of energy, you must include both rotational and translational KE terms.
 
  • #13
Doc Al said:
There's only one angle here: The angle the plank makes with the wall. (Assume it starts out perfectly flat against the wall, and is then given a nudge.)

To apply conservation of energy, you must include both rotational and translational KE terms.

Ooops, sorry about that. In that case i san write [tex]v_{cm}^{2}=2gl(1-\sin\theta)-\frac{1}{3}l^{2}\omega^{2}[/tex] or [tex](\omega l)^{2}=\frac{3}{2}gl(1-\sin\theta)[/tex]

By the way, I'm off tomorrow, so maybe I need to wait a week to solve this problem if I don't today.
 
  • #14
Good. Hint: Consider the horizontal component of this velocity.
 
  • #15
Doc Al said:
Good. Hint: Consider the horizontal component of this velocity.

Ok, now I'm back from my little vacation. I still don't know how velocities can help, though. I want to deal with accelerations. So I need to differentiate the equation above.

Firstly I separate the horizontal and vertical velocities.

[tex]\omega^{2}(\sin^{2}\theta+\cos^{2}\theta)=\frac{3}{2}gl(1-\cos\theta)[/tex] I can then differntiate this to [tex]-2\omega\sin\theta a_{x_{CM}}l+2\omega\cos\theta a_{y_{CM}}l=-\frac{3}{2}gl\cos\theta\omega[/tex] Continuing this way, first dividing by omega, then substituting for axcm=N2 (where it loses contact), omega2 (angular velocity) and alpha (angular acceleration), I get the equation [tex]\sin^{2}\theta+2\sin\theta\cos\theta-\frac{3}{2}=0[/tex] This leads to the result that the plank loses contact at about 5% of its initial height (analyzing the equation numerically).

Am I on the right track or am I supposed to do something completely different?
 
  • #16
Order said:
I still don't know how velocities can help, though. I want to deal with accelerations. So I need to differentiate the equation above.
Yes, you'll need to differentiate.

Start by giving an expression for the horizontal component of the velocity. Then differentiate that.
 
  • #17
Doc Al said:
Yes, you'll need to differentiate.

Start by giving an expression for the horizontal component of the velocity. Then differentiate that.

Yes, I needed the free body diagram to reevaluate the angular acceleration, and using that the horizontal acceleration should be zero I arrived at the equation [tex]-2\sin\theta+2\sin^{2}\theta-\cos^{2}\theta=-1[/tex] with the non-trivial solution [tex]\sin\theta=\frac{2}{3}[/tex] Thanks for help Doc!
 
  • #18
Excellent! :approve: (A tricky problem indeed.)
 

Related to Tricky problem: Falling plank originally leaning against a wall

1. What causes the plank to fall?

The plank falls due to the force of gravity pulling it towards the ground. The leaning position against the wall creates an unstable equilibrium, causing the plank to eventually lose balance and fall.

2. Can the plank be prevented from falling?

Yes, the plank can be prevented from falling by increasing the friction between the plank and the wall. This can be done by adding rubber stoppers or sandpaper to the contact points between the plank and the wall.

3. What factors affect the speed of the plank falling?

The speed of the plank falling is affected by the angle of the plank, the distance from the wall, and the mass of the plank. The steeper the angle, the closer the plank is to the wall, and the heavier the plank, the faster it will fall.

4. How can the problem of the falling plank be solved?

One solution is to secure the plank to the wall using screws or brackets. This will eliminate the unstable equilibrium and prevent the plank from falling. Another solution is to increase the weight on the leaning end of the plank, creating a more stable equilibrium.

5. What other real-life scenarios involve a similar problem?

This problem is similar to the concept of balancing objects on a seesaw or teeter-totter. It also relates to the stability of ladders, shelves, and other objects leaning against a surface. In physics, this problem is known as the "falling ladder paradox" and is often used to illustrate principles of equilibrium and torque.

Similar threads

  • Introductory Physics Homework Help
Replies
2
Views
150
  • Introductory Physics Homework Help
2
Replies
44
Views
4K
  • Introductory Physics Homework Help
2
Replies
55
Views
2K
  • Introductory Physics Homework Help
Replies
2
Views
647
  • Introductory Physics Homework Help
Replies
27
Views
3K
  • Introductory Physics Homework Help
Replies
5
Views
2K
  • Introductory Physics Homework Help
Replies
5
Views
2K
  • Introductory Physics Homework Help
Replies
5
Views
1K
  • Introductory Physics Homework Help
Replies
12
Views
2K
  • Introductory Physics Homework Help
Replies
1
Views
6K
Back
Top