- 665
- 68
Homework Statement
Show |sin z|^2 = \frac{1}{2}[cosh(2y)-cos(2x)]
Homework Equations
cosh2y = cosh^2y+sinh^2y
cos2x = cos^2x-sin^2x
The Attempt at a Solution
Here is what I have so far
|sinz|^2=|sin(x+iy)|^2=|sin(x)cosh(y)+icos(x)sinh(y)|^2
=sin^2(x)cosh^2(y)+cos^2(x)sinh^2(y)
=sin^2(x)cosh^2(y)+cos^2(x)sinh^2(y)-sin^2(x)sinh^2(y)+sin^2(x)sinh^2(y)
=sin^2(x)[cosh^2(y)+sinh^2(y)]+sinh^2(y)[cos^2(x)-sin^2(x)]
=sin^2(x)cosh(2y)+sinh^2(y)cos(2x)
how should i proceed?