# Trig Question

1. Jun 7, 2010

### frenzal_dude

1. The problem statement, all variables and given/known data
Hi, I need to solve for x:
$$\sqrt{3}cos(x)+sin(x)=1$$

2. Relevant equations

3. The attempt at a solution
$$3(Cosx)^{2}+2\sqrt{3}CosxSinx+(Sinx)^{2}-1=0$$
$$3(Cosx)^{2}+2\sqrt{3}CosxSinx+(Cosx)^{2}=$$
$$4(Cosx)^{2}+2\sqrt{3}SinxCosx=0$$
$$Cosx(4Cosx+2\sqrt{3}Sinx)=0$$
$$\therefore Cosx=0$$ x=90 or 270.
OR
$$4Cosx=-2\sqrt{3}Sinx$$
I wasn't sure how to work out that last bit.
Hope you guys can help.
Frenzal

2. Jun 7, 2010

### Staff: Mentor

In the line above you replaced sin^2(x) - 1 with cos^2(x). That should be -cos^2(x).

Also, you lost the 0 on the right-hand side.
Use the identity that sin(x)/cos(x) = tan(x). You will first need to fix the error noted above, though.

Also, be sure to check your solutions in the original equation. By squaring both sides, you might be introducing extraneous solutions: solutions of your squared equation that are not solutions of the original equation.

One other thing. Since there are no restrictions on x, there are going to be an infinite number of solutions. For example, if x = pi/6 were to turn out to be a solution, then pi/6 + n*2pi, n = 0, +/-1, +/-2, ... would represent all such solutions.

3. Jun 7, 2010

### graphene

divide both sides of the eqn by 2.
& then u can write that as
sin60*cosx + cos60*sinx = 1/2
sin(x + 60) = sin(30) = sin(150)
x = -30, 90

& then substitute & check which is correct

Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Similar Threads - Trig Question Date
Trig question Oct 17, 2016
Basic Trig Problem Jun 11, 2016
Quick Trigonometric Identity Question May 8, 2016
Precalc Trig Arc Length Question Jan 11, 2015
Trig question Nov 6, 2014