How Do You Convert a Trigonometric Expression to a General Sine Function?

KingKai
Messages
34
Reaction score
0

Homework Statement



Express the function f(x) = -2sin(3x) -4cos(3x) in the form of a general sine finction.

Identify the amplitude, period, and phase shift

Homework Equations



sinx/cosx = tanx

sin2x + cos2x = 1


The Attempt at a Solution




don't know how to start
don't penalize me for this.
 
Physics news on Phys.org
If you wanted to express cos(x) as sin(x+a), then a is the phase shift.
What would a have to be?
 
A sin(B x + C) + D=A sin(C) cos(B x)+A cos(C) sin(B x)+D
so solve simultaneously the equations

A cos(C) sin(B x)=-2sin(3x)
A sin(C) cos(B x)=-4cos(3x)
D=0
 
lurflurf said:
A sin(B x + C) + D=A sin(C) cos(B x)+A cos(C) sin(B x)+D
so solve simultaneously the equations

A cos(C) sin(B x)=-2sin(3x)
A sin(C) cos(B x)=-4cos(3x)
D=0

The equations are valid for every value of x. The zeroes of sin(Bx) are at x=k∏/3, k integer. What should be B?

What are the equations at x=0, x=π/6?

ehild
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top