drawar
- 130
- 0
Homework Statement
Let R = \{ (x,y) \in \mathbb{R^{2}}: 0<x<1, 0<y<1\} be the unit square on the xy-plane. Use the change of variables x = \frac{{\sin u}}{{\cos v}} and y = \frac{{\sin v}}{{\cos u}} to evaluate the integral \iint_R {\frac{1}<br /> {{1 - {{(xy)}^2}}}dxdy}
Homework Equations
The Attempt at a Solution
I've already computed the Jacobian:
\frac{{\partial (x,y)}}<br /> {{\partial (u,v)}} = \left| {\begin{array}{*{20}{c}}<br /> {\frac{{\partial x}}<br /> {{\partial u}}} & {\frac{{\partial x}}<br /> {{\partial v}}} \\<br /> {\frac{{\partial y}}<br /> {{\partial u}}} & {\frac{{\partial y}}<br /> {{\partial v}}} \\<br /> <br /> \end{array} } \right| = \left| {\begin{array}{*{20}{c}}<br /> {\frac{{\cos u}}<br /> {{\cos v}}} & {\frac{{\sin u\sin v}}<br /> {{{{\cos }^2}v}}} \\<br /> {\frac{{\sin u\sin v}}<br /> {{{{\cos }^2}u}}} & {\frac{{\cos v}}<br /> {{\cos u}}} \\<br /> <br /> \end{array} } \right| = 1 - {\left( {\frac{{\sin u\sin v}}<br /> {{\cos u\cos v}}} \right)^2}
Now I'm left with finding out how R would look like in the uv-plane. Hope someone can shed some light on this, thanks!