Trigonometric substitution in double integral

drawar
Messages
130
Reaction score
0

Homework Statement



Let R = \{ (x,y) \in \mathbb{R^{2}}: 0&lt;x&lt;1, 0&lt;y&lt;1\} be the unit square on the xy-plane. Use the change of variables x = \frac{{\sin u}}{{\cos v}} and y = \frac{{\sin v}}{{\cos u}} to evaluate the integral \iint_R {\frac{1}<br /> {{1 - {{(xy)}^2}}}dxdy}

Homework Equations





The Attempt at a Solution



I've already computed the Jacobian:

\frac{{\partial (x,y)}}<br /> {{\partial (u,v)}} = \left| {\begin{array}{*{20}{c}}<br /> {\frac{{\partial x}}<br /> {{\partial u}}} &amp; {\frac{{\partial x}}<br /> {{\partial v}}} \\<br /> {\frac{{\partial y}}<br /> {{\partial u}}} &amp; {\frac{{\partial y}}<br /> {{\partial v}}} \\<br /> <br /> \end{array} } \right| = \left| {\begin{array}{*{20}{c}}<br /> {\frac{{\cos u}}<br /> {{\cos v}}} &amp; {\frac{{\sin u\sin v}}<br /> {{{{\cos }^2}v}}} \\<br /> {\frac{{\sin u\sin v}}<br /> {{{{\cos }^2}u}}} &amp; {\frac{{\cos v}}<br /> {{\cos u}}} \\<br /> <br /> \end{array} } \right| = 1 - {\left( {\frac{{\sin u\sin v}}<br /> {{\cos u\cos v}}} \right)^2}

Now I'm left with finding out how R would look like in the uv-plane. Hope someone can shed some light on this, thanks!
 
Physics news on Phys.org
drawar said:

Homework Statement



Let R = \{ (x,y) \in \mathbb{R^{2}}: 0&lt;x&lt;1, 0&lt;y&lt;1\} be the unit square on the xy-plane. Use the change of variables x = \frac{{\sin u}}{{\cos v}} and y = \frac{{\sin v}}{{\cos u}} to evaluate the integral \iint_R {\frac{1}<br /> {{1 - {{(xy)}^2}}}dxdy}

Homework Equations



The Attempt at a Solution



I've already computed the Jacobian:

\frac{{\partial (x,y)}}<br /> {{\partial (u,v)}} = \left| {\begin{array}{*{20}{c}}<br /> {\frac{{\partial x}}<br /> {{\partial u}}} &amp; {\frac{{\partial x}}<br /> {{\partial v}}} \\<br /> {\frac{{\partial y}}<br /> {{\partial u}}} &amp; {\frac{{\partial y}}<br /> {{\partial v}}} \\<br /> <br /> \end{array} } \right| = \left| {\begin{array}{*{20}{c}}<br /> {\frac{{\cos u}}<br /> {{\cos v}}} &amp; {\frac{{\sin u\sin v}}<br /> {{{{\cos }^2}v}}} \\<br /> {\frac{{\sin u\sin v}}<br /> {{{{\cos }^2}u}}} &amp; {\frac{{\cos v}}<br /> {{\cos u}}} \\<br /> <br /> \end{array} } \right| = 1 - {\left( {\frac{{\sin u\sin v}}<br /> {{\cos u\cos v}}} \right)^2}

Now I'm left with finding out how R would look like in the uv-plane. Hope someone can shed some light on this, thanks!
I presume that the image of R, the unit square in x & y, is a subset of the set \displaystyle \ \left\{ (u,\,v)\left|\, 0&lt;u&lt;\frac{\pi}{2}\,,\ 0&lt;v&lt;\frac{\pi}{2}\right.\right\}\ .

If x = 0, then u = 0 and v ≠ π/2 .

If x = 1, then u = sin-1(cos(v)) = sin-1(sin(π/2 - v)) = π/2 - v .

etc.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top