Slimsta
- 189
- 0
Homework Statement
$\int \frac{\sqrt{1-4x^2}dx}{x}$
Homework Equations
The Attempt at a Solution
im stuck and i have no idea why I am getting the wrong answer.
let 2x = sin\phi
dx = cos\phi d\phi / 2
$\int \frac{\sqrt{1-(2x)^2}dx}{x}$=$\int \frac{\sqrt{1-(sin\phi)^2}dx}{x}$=$\int \frac{\sqrt{cos\phi^2}dx}{x}$=$\int \frac{cos\phi dx}{x}$=
$\int \frac{cos\phi^2 d\phi}{2x}$= $ .5\int \frac{cos\phi^2 d\phi}{x}$ = $ .5\int \frac{.5(1+cos(2\phi)) d\phi}{x}$=
$ (1/4) \int 1/x+cos(2\phi)/x d\phi $
am i even on the right truck?