Trigonometry in this calculus problem

endeavor
Messages
174
Reaction score
0
Find all the points on the graph of the function f(x) = 2 \sin x + \sin^2 x at which the tangent is horizontal.
f'(x) = 2 \cos x + 2 \sin x \cos x = 0
2 \cos x (1 + \sin x) = 0
\cos x = 0 or \sin x = -1
x = \frac{\pi}{2} + n\pi or x = \frac{3\pi}{2} + 2n\pi
I then plug into find the y-coordinates. However, the book's answer for the cos x = 0 part is x = \frac{\pi}{2} + 2n\pi. But cos x = 0 for all x = \frac{\pi}{2} + n\pi... right? where did the 2 come from?
 
Last edited:
Physics news on Phys.org
f'(x) = 2\cos x + 4\sin x \cos x

2\cos x(1+2\sin x) = 0
 
Last edited:
oops. It's actually f(x) = 2 \sin x + \sin^2 x
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top