Triple Integral To Find Volume Between Cylinder And Sphere

  • Thread starter Thread starter flyusx
  • Start date Start date
  • Tags Tags
    Integral Volume
flyusx
Messages
63
Reaction score
10
Homework Statement
Express in rectangular, spherical and cylindrical coordinates a triple integral returning the volume of a sphere $$x^2+y^2+z^2=36$$ that is outside a cylinder $$x^2+y^2=9$$.
Relevant Equations
I use the physics convention here with spherical $$(r,\theta,\phi)$$ and cylindrical $$(\rho,\phi,z)$$. In cylindrical coordinates, $$\rho^2=x^2+y^2$$.
I got the two relations for spherical and rectangular coordinates. In rectangular:
$$\int_{-6}^{6}\int_{-\sqrt{36-x^{2}}}^{\sqrt{36-x^{2}}}\int_{-\sqrt{36-x^{2}-y^{2}}}^{\sqrt{36-x^2-y^2}}\text{d}z\text{d}y\text{d}x-\int_{-3}^{3}\int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}}\int_{-\sqrt{36-x^{2}-y^{2}}}^{\sqrt{36-x^2-y^2}}\text{d}z\text{d}y\text{d}x$$
In spherical:
$$\int_{0}^{2\pi}\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}}\int_{3\csc(\theta)}^{6}r^{2}\sin(\theta)\text{d}r\text{d}\theta\text{d}\phi$$
I'm having trouble with cylindrical. The φ bounds are $$0\leq\phi\leq2\pi$$. The z bounds are already given in the rectangular system and can be converted to ρ by the relation given in relevant equations. The inner ρ bound is 3 because the cylinder is a distance 3 away from the z-axis. We have:
$$\int_{0}^{2\pi}\int_{3}^{?}\int_{-\sqrt{36-\rho^2}}^{\sqrt{36-\rho^2}}\rho\text{d}z\text{d}\rho\text{d}\phi$$
The proper solution is for the outer ρ bound to be six (the integrals resolve to the same number). I see this as coming from the maximum possible distance between the z-axis and the bound of the sphere (specifically when z=0)$. What I don't get is that since the outer boundary is the sphere, shouldn't the outer bound be written as $$\rho^{2}+z^{2}=36$$
And then solve for ρ? This must be wrong because this wouldn't allow the integral to be resolved to a number, but I can' see where I went wrong conceptually.

Thanks in advance!
 
  • Like
Likes Preetammeher
Physics news on Phys.org
I don't think you're using cylindrical coordinates correctly. They are the 3-dimensional counterpart of polar coordinates, with the coordinates being ##z, r,## and ##\theta##. The latter is the angle formed by rays in the x-y plane, while ##\phi## is the angle relative to the z-axis.

Also, it might be simpler to exploit the symmetry of your problem. Everything is symmetric about the z-axis, so you could integrate from 0 to ##\frac \pi 2## and multiply that result by 4.
 
flyusx said:
Homework Statement: Express in rectangular, spherical and cylindrical coordinates a triple integral returning the volume of a sphere $$x^2+y^2+z^2=36$$ that is outside a cylinder $$x^2+y^2=9$$.
Relevant Equations: I use the physics convention here with spherical $$(r,\theta,\phi)$$ and cylindrical $$(\rho,\phi,z)$$. In cylindrical coordinates, $$\rho^2=x^2+y^2$$.

What I don't get is that since the outer boundary is the sphere, shouldn't the outer bound be written as ρ2+z2=36
And then solve for ρ? This must be wrong because this wouldn't allow the integral to be resolved to a number, but I can' see where I went wrong conceptually.
You are already using that relationship for z. Now you need to find the maximal value of ##\rho## regardless of the value of z. I must say I am surprised that it causes you issues as it is completely analogous to what you did in the case of Cartesian coordinates when you found the bounds for x.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top