Triple integral w/ spherical subsitution

dumbfoundead
Messages
1
Reaction score
0

Homework Statement


f(x) is a differentiable function let
F(t)= \int\int\int_{x^2+y^2+z^2\leq t^2} f(x^2+y^2+z^2) dx dy dz

compute F^{'}(t)

Homework Equations



x=p sin \phi cos\theta
y= p sin \phi sin\theta
z= p cos \phi

spherical bounds 0<p<t 0<\phi<\Pi 0<\theta < 2\Pi

p^2 sin\phi = jacobian determinant

3. The attempt at a solution

carried through the substitution \int\int\int f(p^2) p^2 sin \phi dp d\phi d\theta

dont know how to evaluate \intf(p^2) sin\phi d\phi?




 
Physics news on Phys.org
Be careful about putting those repeated copies of the template in your questions.

The remaining integral is trivial. Your function is independent of \phi so the \phi integration is trivial; it's just the integral of sin(\phi)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top