silicon_hobo
- 59
- 0
[SOLVED] trouble finding curve intersection
Sketch the area of the region bounded by the curves y^2+4x=0 and y=2x+4. Set up two integrals, one with respect to x and one with respect to y, for finding the area of the region. Evaluate one of the integrals to find the area.
First I rearrange the equations of the curves to isolate both x & y for each.
y^2+4x=0 \Longrightarrow y^2=-4x \Longrightarrow \sqrt{y^2}=\sqrt{-4x} \Longrightarrow y=2\sqrt{-x},-2\sqrt{-x}
y^2+4x=0 \Longrightarrow x=-\frac{1}{4}y^2
y=2x+4
y=2x+4 \Longrightarrow x=\frac{y-4}{2} \Longrightarrow x=\frac{1}{2}y-2
Next I must find the domain of the integrals by setting y=y.
-\frac{1}{4}y^2=\frac{1}{2}y-2 \Longrightarrow \frac{1}{4}y^2+\frac{1}{2}y-2 \Longrightarrow \frac{1}{2}(y-2)(y+4) \Longrightarrow y=2,-4
This is where I'm running into trouble, when I set x=x.
2\sqrt{-x}=2x+4 -2\sqrt{-x}=2x+4
I know the points of intersection are -1 & -4 respectively but I can't seem to tease those out of the equations.
2\sqrt{-x}=2x+4 \Longrightarrow 2x^\frac{1}{2}+2x+4 \Longrightarrow 2(x^\frac{1}{2}+x+2)
-2\sqrt{-x}=2x+4 \Longrightarrow -2x^\frac{1}{2}+2x+4 \Longrightarrow 2(-x^\frac{1}{2}+x+2)
I'm not sure what to do from here. I can't factor this and if I square it and apply the quadratic equation I get a negative under the sqrt. Some advice would be greatly appreciated. Cheers.
Homework Statement
Sketch the area of the region bounded by the curves y^2+4x=0 and y=2x+4. Set up two integrals, one with respect to x and one with respect to y, for finding the area of the region. Evaluate one of the integrals to find the area.
Homework Equations
The Attempt at a Solution
First I rearrange the equations of the curves to isolate both x & y for each.
y^2+4x=0 \Longrightarrow y^2=-4x \Longrightarrow \sqrt{y^2}=\sqrt{-4x} \Longrightarrow y=2\sqrt{-x},-2\sqrt{-x}
y^2+4x=0 \Longrightarrow x=-\frac{1}{4}y^2
y=2x+4
y=2x+4 \Longrightarrow x=\frac{y-4}{2} \Longrightarrow x=\frac{1}{2}y-2
Next I must find the domain of the integrals by setting y=y.
-\frac{1}{4}y^2=\frac{1}{2}y-2 \Longrightarrow \frac{1}{4}y^2+\frac{1}{2}y-2 \Longrightarrow \frac{1}{2}(y-2)(y+4) \Longrightarrow y=2,-4
This is where I'm running into trouble, when I set x=x.
2\sqrt{-x}=2x+4 -2\sqrt{-x}=2x+4
I know the points of intersection are -1 & -4 respectively but I can't seem to tease those out of the equations.
2\sqrt{-x}=2x+4 \Longrightarrow 2x^\frac{1}{2}+2x+4 \Longrightarrow 2(x^\frac{1}{2}+x+2)
-2\sqrt{-x}=2x+4 \Longrightarrow -2x^\frac{1}{2}+2x+4 \Longrightarrow 2(-x^\frac{1}{2}+x+2)
I'm not sure what to do from here. I can't factor this and if I square it and apply the quadratic equation I get a negative under the sqrt. Some advice would be greatly appreciated. Cheers.
Last edited: