- #1

- 147

- 0

[tex]\int cos(60 \pi x) [/tex]

this becomes... sin(60 pi x)/60 pi?

- Thread starter LocationX
- Start date

- #1

- 147

- 0

[tex]\int cos(60 \pi x) [/tex]

this becomes... sin(60 pi x)/60 pi?

- #2

jamesrc

Science Advisor

Gold Member

- 476

- 1

Yes, that's correct... plus a constant if you're looking for the indefinite integral.

- #3

quasar987

Science Advisor

Homework Helper

Gold Member

- 4,778

- 11

- #4

- 36

- 0

Yes it's ok. Remember how to derive sin and cos and it will surely be easier for you

- #5

- 759

- 0

[tex] \int {\cos \left( {60\pi x} \right)dx} = \frac{1}{{60\pi }}\int {\cos \left( 60\pi x \right)d\left( {60\pi x} \right)} = \boxed{\frac{{\sin \left( {60\pi x} \right)}}{{60\pi }} + C} [/tex]

...and check via derivative (chain rule here)

[tex] \frac{d}{{dx}}\left[ {\frac{{\sin \left( {60\pi x} \right)}}{{60\pi }} + C} \right] = \frac{{\cos \left( {60\pi x} \right) \cdot 60\pi }}{{60\pi }} = \cos \left( {60\pi x} \right) [/tex]

- Last Post

- Replies
- 5

- Views
- 1K

- Last Post

- Replies
- 5

- Views
- 1K

- Last Post

- Replies
- 4

- Views
- 1K

- Last Post

- Replies
- 4

- Views
- 1K

- Last Post

- Replies
- 1

- Views
- 870

- Last Post

- Replies
- 4

- Views
- 2K

- Last Post

- Replies
- 4

- Views
- 1K

- Replies
- 1

- Views
- 6K

- Last Post

- Replies
- 3

- Views
- 1K

- Replies
- 3

- Views
- 2K