- #1

LocationX

- 147

- 0

[tex]\int cos(60 \pi x) [/tex]

this becomes... sin(60 pi x)/60 pi?

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter LocationX
- Start date

- #1

LocationX

- 147

- 0

[tex]\int cos(60 \pi x) [/tex]

this becomes... sin(60 pi x)/60 pi?

- #2

jamesrc

Science Advisor

Gold Member

- 477

- 1

Yes, that's correct... plus a constant if you're looking for the indefinite integral.

- #3

quasar987

Science Advisor

Homework Helper

Gold Member

- 4,793

- 21

- #4

borisleprof

- 36

- 0

Yes it's ok. Remember how to derive sin and cos and it will surely be easier for you

- #5

bomba923

- 760

- 0

[tex] \int {\cos \left( {60\pi x} \right)dx} = \frac{1}{{60\pi }}\int {\cos \left( 60\pi x \right)d\left( {60\pi x} \right)} = \boxed{\frac{{\sin \left( {60\pi x} \right)}}{{60\pi }} + C} [/tex]

...and check via derivative (chain rule here)

[tex] \frac{d}{{dx}}\left[ {\frac{{\sin \left( {60\pi x} \right)}}{{60\pi }} + C} \right] = \frac{{\cos \left( {60\pi x} \right) \cdot 60\pi }}{{60\pi }} = \cos \left( {60\pi x} \right) [/tex]

Share:

- Replies
- 5

- Views
- 35

- Last Post

- Replies
- 2

- Views
- 275

- Last Post

- Replies
- 4

- Views
- 967

- Replies
- 3

- Views
- 572

- Replies
- 1

- Views
- 321

- Replies
- 6

- Views
- 405

- Last Post

- Replies
- 5

- Views
- 699

- Replies
- 3

- Views
- 443

- Replies
- 2

- Views
- 414

- Replies
- 19

- Views
- 607