Trying to build an ultrasonic drill

AI Thread Summary
The discussion focuses on building an ultrasonic drill for silicon wafers due to budget constraints. Key components identified include a 70W piezoelectric transducer, a step horn made from aluminum, a hollow metal drill bit, and a 60W ultrasonic driver sourced from eBay. Concerns center on matching resonant frequencies, as even slight discrepancies can significantly impact impedance. The author seeks advice on affordable solutions for tuning frequency and measuring impedance, while also clarifying misconceptions about wavelength calculations in different materials. The conversation highlights the interdisciplinary nature of the project, blending mechanical, electrical, and physics concepts.
K_Mitchell
Messages
19
Reaction score
0
I'm attempting to build an ultrasonic drill to make holes in silicon wafers, since we don't have the budget to buy one in our lab. From what (I think) I know, ultrasonic drills can either work by the "jackhammer" motion of a free floating mass which I don't know how to make, or by the transfer of the ultrasonic frequency to an abrasive slurry. I want to make the latter type.

From what I gathered online, I think I'll need the following components:

1) Piezoelectric transducer. I found a 70W transducer that works at 28 KHz for about $40.
2) Horn. This transfers the vibrations from the transducer to the drill bit. I'm planning to have a "step horn" milled for me at our machine shop out of aluminum. This type amplifies the vibrations. Its length is critical to reduce the impedence, and should be roughly half a wavelength long as a general rule of thumb.
3) Drill bit. For the 1 mm holes I'm planning to drill, the best "bit" appears to be a hollow metal cylinder that I can solder to the small end of the horn.
4) Ultrasonic driver. My electronics knowledge is very limited, so I'm planning to just buy one off Ebay for $30. I found a 60W, 28 KHz driver that works for 110V.

What I'm worried about most is matching the resonant frequencies. I'm trying to follow this instructional the best I can: http://www.imajeenyus.com/electronics/20110514_power_ultrasonic_driver/index.shtml. Apparently, transducers that are rated at 28 KHz might be off by like 0.5 KHz, and this small difference can have a huge effect on the impedance as you can see from the plots on this website. The author apparently has a way to measure the impedance and tune the frequency so that the impedance is minimized. If I buy the 28 KHz driver (the author built their own), what's the cheapest thing I can buy that will let me tune this up and down, and measure the impedance?

Also, when I look up the wavelength of a 28 KHz wave (http://www.csgnetwork.com/freqwavelengthcalc.html), I see numbers like 5000 meters for half a wavelength. However, the author's horn is only 95 mm long. Clearly, there's something about waves I don't understand and I would appreciate any answers for this discrepancy.
 
Engineering news on Phys.org
Do you guys think this topic is better off in the electrical engineering forums? It's a combination of mechanical, electrical, and physics so I wasn't quite sure where to post it.
 
Try calculating the wavelength for sound, rather than light.
 
Did that and found the number was still an order of magnitude off. Then I realized this value was through air rather than aluminum. When the speed of sound through aluminum was used, I got the correct value. Thanks! I also found an excellent paper on horn engineering with easy to perform calculations.

Still need help with finding what I can use for fine-tuning the frequency and measuring the impedance.
 
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'd like to create a thread with links to 3-D Printer resources, including printers and software package suggestions. My motivations are selfish, as I have a 3-D printed project that I'm working on, and I'd like to buy a simple printer and use low cost software to make the first prototype. There are some previous threads about 3-D printing like this: https://www.physicsforums.com/threads/are-3d-printers-easy-to-use-yet.917489/ but none that address the overall topic (unless I've missed...
Back
Top