Turing machine - polynomial time expression

xeon123
Messages
90
Reaction score
0
In the Turing Machine, the machine accepts a word if the computation terminates in the accepting state. The language accepted by the machine, L(M), has associated an alphabet Δ and is defined by

L(M) = {w \in \Delta}

This means that the machine understands the word w if w belongs to the language.
We denote by Tm(w) the number of steps in the computation of M on the input w. If the computation never halts, then Tm(w)=infinity.

Also, we denote the worst case run time of M as

Tm(n) = max{Tm(w)}

which means the biggest words in the dictionary (I suppose).

But, we say that M runs in polynomial time if there exists k such that for all n, T(n)\leq n^k + k.

I don't understand what n^k+k means. Can anyone explain me the last expression?

Thanks,
 
Last edited by a moderator:
Mathematics news on Phys.org
xeon123 said:
In the Turing Machine, the machine accepts a word if the computation terminates in the accepting state. The language accepted by the machine, L(M), has associated an alphabet Δ and is defined by

L(M) = {w \in \Delta}

This means that the machine understands the word w if w belongs to the language.
We denote by Tm(w) the number of steps in the computation of M on the input w. If the computation never halts, then Tm(w)=infinity.

Also, we denote the worst case run time of M as

Tm(n) = max{Tm(w)}

which means the biggest words in the dictionary (I suppose).

But, we say that M runs in polynomial time if there exists k such that for all n, T(n)\leq n^k + k.

I don't understand what n^k+k means. Can anyone explain me the last expression?

Thanks,

Your definition for polynomial time seems to be a little off. It's usually defined as T(n) ≤ nk, without the additional k term that you showed.

If you do a search for "polynomial time" this is one of the links that you'll see: http://www.wordiq.com/definition/Polynomial_time.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top