Two exercises on complex sequences (one about Mandelbrot set)

mahler1
Messages
217
Reaction score
0
Homework Statement .

I am trying to solve two exercises about complex sequences:

1) Let ##\alpha \in \mathbb C##, ##|\alpha|<1##. Which is the limit ##\lim_{n \to \infty} \alpha^n##?, do the same for the case ##|\alpha|>1##.

2) Let ##\mathcal M## be the set of the complex numbers ##c## such that the sequence defined recursively by: ##z_0=0##, ##z_{n+1}={z_n}^2+c## is bounded (##\mathcal M## is called the Mandelbrot set). Prove that ##\mathcal M \subset \{|z|\leq 2\}##

The attempt at a solution.

For point 1) what I did was: if ##|\alpha|<1##, I can express ##\alpha## in its exponential form, so ##\alpha=re^{iθ}## for ##0<r<1## and ##0\leq θ<2\pi##. Then, ##\alpha^n=r^ne^{niθ}##. Let's show that ##\alpha^n \to 0##, ##0\leq |r^ne^{niθ}|=|r^n(\cos(θ)+i\sin(θ))|\leq 2|r|^n \to 0##.

I don't know what to do for the case ##|\alpha|>1##. In this case, if I consider the vector from the point ##(0,0)## to ##(a,b)##, where ##\alpha^n=a+ib##, then the length of the vector tends to infinity. But I don't what to say about the limit of ##\alpha^n##. From my observation, I could conclude that ##|\alpha^n| \to \infty##. Would this imply that the sequence ##\{\alpha^n\}_{n \in \mathbb N}## doesn't have a limit?.

For point 2), I don't have any idea how to prove this. Suppose ##\mathcal M \not \subset \{|z|\leq 2\}##. Then, there is some ##c \in \mathcal M : |c|>2##. How could I prove that the sequence ##\{z_n\}_{n \in \mathbb N}## is not bounded?
 
Physics news on Phys.org
mahler1 said:
Homework Statement .

I am trying to solve two exercises about complex sequences:

1) Let ##\alpha \in \mathbb C##, ##|\alpha|<1##. Which is the limit ##\lim_{n \to \infty} \alpha^n##?, do the same for the case ##|\alpha|>1##.

2) Let ##\mathcal M## be the set of the complex numbers ##c## such that the sequence defined recursively by: ##z_0=0##, ##z_{n+1}={z_n}^2+c## is bounded (##\mathcal M## is called the Mandelbrot set). Prove that ##\mathcal M \subset \{|z|\leq 2\}##

The attempt at a solution.

For point 1) what I did was: if ##|\alpha|<1##, I can express ##\alpha## in its exponential form, so ##\alpha=re^{iθ}## for ##0<r<1## and ##0\leq θ<2\pi##. Then, ##\alpha^n=r^ne^{niθ}##. Let's show that ##\alpha^n \to 0##, ##0\leq |r^ne^{niθ}|=|r^n(\cos(θ)+i\sin(θ))|\leq 2|r|^n \to 0##.

Yes.

Note however that ##|r^n e^{ni\theta}| = r^n##. This is a better approximation. But your method was good too.

I don't know what to do for the case ##|\alpha|>1##. In this case, if I consider the vector from the point ##(0,0)## to ##(a,b)##, where ##\alpha^n=a+ib##, then the length of the vector tends to infinity. But I don't what to say about the limit of ##\alpha^n##. From my observation, I could conclude that ##|\alpha^n| \to \infty##. Would this imply that the sequence ##\{\alpha^n\}_{n \in \mathbb N}## doesn't have a limit?.

Yes.

For point 2), I don't have any idea how to prove this. Suppose ##\mathcal M \not \subset \{|z|\leq 2\}##. Then, there is some ##c \in \mathcal M : |c|>2##. How could I prove that the sequence ##\{z_n\}_{n \in \mathbb N}## is not bounded?

Take ##|c|>2##. Maybe you could start with writing out the first 5 or 6 terms of the ##z_n## sequence to see if you can find some pattern. Of course you only care about the norm of ##z_n##, since you need to show that goes to infinity.
 
  • Like
Likes 1 person
R136a1 said:
Yes.

Note however that ##|r^n e^{ni\theta}| = r^n##. This is a better approximation. But your method was good too.Take ##|c|>2##. Maybe you could start with writing out the first 5 or 6 terms of the ##z_n## sequence to see if you can find some pattern. Of course you only care about the norm of ##z_n##, since you need to show that goes to infinity.

Thanks for the first remark. Now, for the second part, I did write the first terms of the sequence but I can't arrive to an expression that helps me to prove what I want to. I mean, I would like to express ##|z_n|=z^n|c|## with ##z>1## or get to a similar expression in order to conclude that the norm tends to infinity. Could you give me another hint for that?
 
You have

|z_0| = 0
|z_1| = |c|
|z_2| = |z_1^2 + c| \ |c| |c+1|\geq |c|
|z_3| = |(c^2 + c)^2 + c| = |c^2 (c +1)^2 + c| = |c| |c(c+1)^2 + 1|\geq |c|( |c|^2 |c+1|^2 - 1) \geq |c| (|c|^2 -1) \geq |c|^2

where I make fundamental use of the inequality ##|a-b| \geq ||a| - |b||##.
 
  • Like
Likes 1 person
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top