clairez93
- 113
- 0
Homework Statement
Determine the divergence or convergence of the improper integral. Evaluate the integral if it converges.
1. \int^{4}_{2}\frac{1}{\sqrt{x^{2}-4}} dx
2. \int^{2}_{0}\frac{1}{\sqrt[3]{x-1}} dx
Homework Equations
The Attempt at a Solution
1.
t = x - 2
dt = dx
\int^{4}_{2}\frac{1}{\sqrt{x^{2}-4}} dx
=\int^{2}_{0}\frac{1}{\sqrt{(t+2)^{2}-4}} dx
=\int^{2}_{0}\frac{1}{\sqrt{t^{2}+4t}} dx
\stackrel{lim}{x\rightarrow\infty} \int^{2}_{N}\frac{1}{\sqrt{t^{2}+4t}} dt
I'm not sure how to integrate \int^{2}_{N}\frac{1}{\sqrt{t^{2}+4t}} dt from here.
2.
\int^{2}_{0}\frac{1}{\sqrt[3]{x-1}} dx = \int^{1}_{0}\frac{1}{\sqrt[3]{x-1}} + \int^{2}_{1}\frac{1}{\sqrt[3]{x-1}}
t = 1 - x
dt = -dx
\int^{1}_{0}\frac{1}{\sqrt[3]{x-1}} = \int^{0}_{1}\frac{-1}{\sqrt[3]{-t}} dt = \int^{1}_{0}\frac{1}{\sqrt[3]{-t}} dt
\stackrel{lim}{x\rightarrow\infty} \int^{1}_{N}-t^{-1/3} dt
= \stackrel{lim}{x\rightarrow\infty} -\frac{3}{4}(-t)^{4/3}|^{1}_{N} = \stackrel{lim}{x\rightarrow\infty} \left[\frac{3}{4} + \frac{3}{4}(-N)^{4/3}\right] = \infty
So I got that this integral diverges, however, the book answers are:
Book Answers:
1. ln (2 + \sqrt{3})
2. 0
Last edited: