soopo said:
How would you do the proof more rigorous?
Here is your rigorous proof. Using L'Hôpital's Rule,
Let y = lim_{n\rightarrow\infty}\left(1+\frac{1}{n}\right)^{n}
Take the natural logarithm of both sides of this equation.
ln(y) = ln\left[lim_{n\rightarrow\infty}\left(1+\frac{1}{n}\right)^{n}\right]
= lim_{n\rightarrow\infty}\left[ln\left(1+\frac{1}{n}\right)^{n}\right]
= lim_{n\rightarrow\infty}\left[nln\left(1+\frac{1}{n}\right)\right]
= lim_{n\rightarrow\infty}\left[\frac{ln \left(1+\frac{1}{n}\right)}{\frac{1}{n}}\right]
If we try to solve the above limit using direct substitution, we'll obtain the indeterminant form 0/0. Thus, we apply L'Hôpital's Rule to attempt to find the limit by taking the derivative of the numerator and denominator and finding the limit of that ratio.
ln(y) = lim_{n\rightarrow\infty}\left[ln\left(\frac{1+\frac{1}{n}}{\frac{1}{n}}\right)\right]
= lim_{n\rightarrow\infty}\left[\left(\frac{-1/n^{2}}{1+\frac{1}{n}}\right)/\left(-1/n^2\right)}\right]
= lim_{n\rightarrow\infty}\left[1+\frac{1}{n}\right]
= 1
Therefore ln(y) = 1 which implies
y =
e by definition of logarithms.
By comparison, since we let
y = the original limit expression, then:
e = lim_{n\rightarrow\infty}\left(1+\frac{1}{n}\right)^{n}
This completes the proof and shows why
y converges to
e as
n gets larger and larger (approaches \infty).