Unbounded Sequence (bn): Convergence of Subsequence (b(kn))

  • Thread starter Thread starter gankutsuou
  • Start date Start date
  • Tags Tags
    Homework Sequence
gankutsuou
Messages
3
Reaction score
0
If (bn) is an unbounded sequence then it has a sequence (b(kn)) such that lim (1/(b(kn)))=0

(where kn is a subsequence of bn )
 
Physics news on Phys.org
Welcome to PF!

Hi gankutsuou! Welcome to PF! :smile:

(try using the X2 tag just above the Reply box :wink:)

Do the obvious …

start "If {bn} is unbounded, then for any n … " :smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top