BWV
- 1,575
- 1,928
couple of questions
a) the operators not commuting would also be true of position and momentum operators in classical mechanics (x d/dx -d/dx x) f(x) so the non-commutation does not inherently constitute a proof for the uncertainty principle, or do you just not care about the uncertainty at classical scales?
b) how can you commute discrete operators with continuous ones - are you not multiplying matrices of different dimensions together?
a) the operators not commuting would also be true of position and momentum operators in classical mechanics (x d/dx -d/dx x) f(x) so the non-commutation does not inherently constitute a proof for the uncertainty principle, or do you just not care about the uncertainty at classical scales?
b) how can you commute discrete operators with continuous ones - are you not multiplying matrices of different dimensions together?