Uncertainty principle for position and hamiltonian

kehler
Messages
103
Reaction score
0
I found the uncertainty between delta x (position) and delta H (Hamiltonian) to be greater or equal to (h_bar*<p>)/ 2m.
Does this mean for stationary states, where <p>=0, the uncertainty can be zero? ie we can precisely measure the position and energy?
 
Physics news on Phys.org
kehler said:
I found the uncertainty between delta x (position) and delta H (Hamiltonian) to be greater or equal to (h_bar*<p>)/ 2m.
Does this mean for stationary states, where <p>=0, the uncertainty can be zero? ie we can precisely measure the position and energy?

So, in a stationary state <delta H>=0. You thus already know the energy exactly. But, unless the position eigenstate is also a stationary state then when you measure the position you collapse to a different state, an give up info about the momentum. Thus, because most hamiltonians include a kinetic term, it would seem like you can not measure both exactly. But, for certain cooked up systems maybe you can.

You should probably explain more about the particular problem/system you have in mind. Give us a few equations as well that further explain your idea. This will help us come to a reasonable answer.
 
As Olgran said, in a stationary state <H> is definite. So \Delta H\Delta x=0 already. Your uncertainty in x is not guaranteed to be zero. Remember that the uncertainty principle is a lower bound on your uncertainty, not an upper bound. It does, however, mean you have some "hope" of finding a definite H and X state, but it's not guaranteed that you can just from looking at the Uncertainty Principle.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top