Understanding f'(0) for f(x) = x^2sin(1/x) and Its Limit with Trig Functions

  • Thread starter Thread starter endeavor
  • Start date Start date
  • Tags Tags
    Trig
endeavor
Messages
174
Reaction score
0
Determine whether f'(0) exists.
f(x) = { x2sin (1/x) if x does not equal 0, 0 if x = 0}

f'(0) = \lim_{x\rightarrow 0} \frac{x^2 \sin \frac{1}{x}}{x - 0}
f'(0) = \lim_{x\rightarrow 0} \frac{\sin \frac{1}{x}}{\frac{1}{x}}
Let u = 1/x. As x approaches 0, u approaches infinity. So I can't use lim x->0 (sin x)/x = 1. But now I have:
f'(0) = \lim_{u\rightarrow \infty} \frac{sin u}{u}
since sin u oscillates between -1 and 1, and u goes to infinity, f'(0) = 0.
 
Last edited:
Physics news on Phys.org
sure that is fine, you could also note that -x^2<=x^2*sin(1/x)<=x^2 and use that.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top