Ratzinger
- 291
- 0
this no homework, but nevertheless can someone hint me how this integration by parts works?
<br /> \int {d^4 } x\frac{{\partial L}}{{\partial \left( {\partial _\mu \phi } \right)}}\partial _\mu (\delta \phi ) = {\rm{ }} - \int {d^4 } x\partial _\mu \left( {\frac{{\partial L}}{{\partial (\partial _\mu \phi )}}} \right)\delta \phi {\rm{ }} + {\rm{ }}\int {d^4 } x{\rm{ }}\partial _\mu \left( {\frac{{\partial L}}{{\partial (\partial _\mu \phi )}}\delta \phi } \right)<br />
where <br /> L(\phi ,\partial _\mu \phi )<br />
I don't understand where the second term on the RHS comes from. I thought the second term should be <br /> \frac{{\partial L}}{{\partial (\partial _\mu \phi )}}\delta \phi \left| {^b _a } \right. = 0<br />
thanks
<br /> \int {d^4 } x\frac{{\partial L}}{{\partial \left( {\partial _\mu \phi } \right)}}\partial _\mu (\delta \phi ) = {\rm{ }} - \int {d^4 } x\partial _\mu \left( {\frac{{\partial L}}{{\partial (\partial _\mu \phi )}}} \right)\delta \phi {\rm{ }} + {\rm{ }}\int {d^4 } x{\rm{ }}\partial _\mu \left( {\frac{{\partial L}}{{\partial (\partial _\mu \phi )}}\delta \phi } \right)<br />
where <br /> L(\phi ,\partial _\mu \phi )<br />
I don't understand where the second term on the RHS comes from. I thought the second term should be <br /> \frac{{\partial L}}{{\partial (\partial _\mu \phi )}}\delta \phi \left| {^b _a } \right. = 0<br />
thanks
Last edited: