Understanding Linear Algebra Solutions: Sketching and Ratios Explained

woundedtiger4
Messages
188
Reaction score
0
ifx06a.jpg


Please help me to understand the solution :( (I have made the sketch, is it correct?, where has the 1/4 comes from? is it like 1:3 (1 ratio 3) => numerator divided by numerator + denominator = 1/1+3 =1/4 (as given on page 6 at http://www.lowndes.k12.ga.us/view/14167.pdf )? or am I wrong? For point position vector b in the solution the point B is on the left side from P (as A is on the right side of P)?)

Thanks in advance.
 
Last edited by a moderator:
Physics news on Phys.org
woundedtiger4 said:
ifx06a.jpg


Please help me to understand the solution :( (I have made the sketch, is it correct?, where has the 1/4 comes from? is it like 1:3 (1 ratio 3) => numerator divided by numerator + denominator = 1/1+3 =1/4 (as given on page 6 at http://www.lowndes.k12.ga.us/view/14167.pdf )? or am I wrong? For point position vector b in the solution the point B is on the left side from P (as A is on the right side of P)?)

Thanks in advance.
Your sketch isn't very accurate. It looks like A is more than 1/3 of the way along the segment between P and Q. From the problem description, the length of AQ is three times the length of AP, so A should be 1/4 of the way from P to Q.

woundedtiger4 said:
For point position vector b in the solution the point B is on the left side from P (as A is on the right side of P)?)
I don't understand what you're asking here. What point B?
 
Last edited by a moderator:
woundedtiger4 said:
where has the 1/4 comes from? is it like 1:3 (1 ratio 3) => numerator divided by numerator + denominator = 1/1+3 =1/4 (as given on page 6 at http://www.lowndes.k12.ga.us/view/14167.pdf )? or am I wrong?
It is 1/(1+3) = 1/4. If it were 1/3, then A would be a distance of x from P while A will be a distance of 2x from Q. Can you see this? This would make the ratio 1:2 as opposed to 1:3.

woundedtiger4 said:
For point position vector b in the solution the point B is on the left side from P (as A is on the right side of P)?)
Yes, except that the question doesn't introduce a new point B, it just asked whether A is uniquely determinable, which is no because it can be found on the left side of P as well. A has two possible positions.
 
Last edited by a moderator:
The line through P and Q is the map ##t\mapsto p+t(q-p)##. Note that this map takes 0 to p and 1 to q. So if we restrict the domain of this map to [0,1], we get the line segment from P to Q. The expression p+t(q-p) can be interpreted as "start at p and take t steps of length |q-p| in the direction towards q". (I know that ##t\leq 1##, but you can certainly imagine taking less than one step; half a step would be a step that's half as long). How big a step would you have to take to end up at a point that's three times as far from P as from Q?

The distinction between P and p is kind of nonsensical if you're working with the vector space ##\mathbb R^3##. It makes sense when you're working with a 3-dimensional affine space, but my guess is that this is from a book that doesn't mention affine spaces.

For the second part, I would find all ##t\in\mathbb R## such that ##|a-p|=3|a-q|##, where ##a=p+t(q-p)=(1-t)p+tq##.
 
Last edited:
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top